[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Conceptual Knowledge Modelling for Human-AI Teaming in Data-Frugal Industrial Environments

  • Conference paper
  • First Online:
Conceptual Knowledge Structures (CONCEPTS 2024)

Abstract

When AI interacts with humans in complex environments, such as aerospace manufacturing, safety of operation is of paramount importance. Trustworthiness of AI needs to be ensured through, among other things, explainability of its behaviour and rationale, which is typically a challenge for current deep neural network-based systems.

We tackle the knowledge comprehensibility aspect of intrinsic explainability by suggesting a concept-level environment awareness model combining various complementary knowledge sources - statistical learning using dedicated property detectors through publicly available software, and crowd-sourced common-sense knowledge graphs. Our approach also addresses the issue of data-frugal learning, typical for environments with highly specific purpose-built artefacts. We adopt Gärdenfors’s Conceptual Spaces as a cognitively-motivated knowledge representation framework and apply our typicality quantification model in a use case on interpretable classification of manufacturing artefacts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 99.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 59.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Cf. algorithmic and model transparency [26].

  2. 2.

    Each of us has a unique conceptual space arising from our own experience with the world. Thus, category prototypes may also differ across individuals and so may exact meaning of symbols, whilst sill retaining necessary properties in order to ensure effective natural language communication.

  3. 3.

    Observed as a natural kind [37] and in its natural state (i.e., not painted over or denoting an arbitrary lemon-like artefact).

  4. 4.

    https://fastapi.tiangolo.com (accessed on 23 May 2024).

  5. 5.

    https://cyberbotics.com (accessed on 18 February 2022).

  6. 6.

    https://docs.omniverse.nvidia.com/isaacsim/latest (accessed on 18 March 2024).

  7. 7.

    e.g. https://pixabay.com/photos/tool-equipment-work-craft-allen-379596 (accessed on 10 November 2023).

  8. 8.

    https://github.com/fengsp/color-thief-py (accessed on 27 November 2023).

  9. 9.

    http://api.conceptnet.io (accessed on 22 March 2024).

References

  1. Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fus. 58, 82–115 (2020)

    Article  Google Scholar 

  2. Bellmund, J.L., Gärdenfors, P., Moser, E.I., Doeller, C.F.: Navigating cognition: spatial codes for human thinking. Science 362(6415), eaat6766 (2018)

    Google Scholar 

  3. Bengio, Y., et al.: A meta-transfer objective for learning to disentangle causal mechanisms. arXiv preprint arXiv:1901.10912 (2019)

  4. Bird, S., Klein, E., Loper, E.: Natural language processing with Python: analyzing text with the natural language toolkit. Inc, O’Reilly Media (2009)

    Google Scholar 

  5. Burgess, C.P., et al.: Understanding disentangling in \(\beta \)-vae. arXiv preprint arXiv:1804.03599 (2018)

  6. Constantinescu, A.O., O’Reilly, J.X., Behrens, T.E.: Organizing conceptual knowledge in humans with a gridlike code. Science 352(6292), 1464–1468 (2016)

    Article  Google Scholar 

  7. Croft, W., Cruse, D.A.: Cognitive linguistics. Cambridge University Press (2004)

    Google Scholar 

  8. EASA: Artificial intelligence roadmap 2.0 (2023). https://www.easa.europa.eu/en/downloads/137919/en. Accessed 23 May 2024

  9. European Commission High-level Expert Group on Artificial Intelligence: Ethics guidelines for Trustworthy AI. European Commission (2019). https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai

  10. Galetić, V.: Formalisation and quantification of a cognitively motivated conceptual space model based on the prototype theory. Ph.D. thesis, University of Zagreb (2016)

    Google Scholar 

  11. Galetić, V., Nottle, A.: Inherently interpretable knowledge representation for a trustworthy artificially intelligent agent teaming with humans in industrial environments. In: AIC, pp. 30–45 (2022)

    Google Scholar 

  12. Galetić, V., Nottle, A.: Flexible and inherently comprehensible knowledge representation for data-efficient learning and trustworthy human-machine teaming in manufacturing environments. arXiv preprint arXiv:2305.11597 (2023)

  13. Gärdenfors, P.: Conceptual spaces: The geometry of thought. MIT press (2004)

    Google Scholar 

  14. Gärdenfors, P.: The Geometry of Meaning: Semantics Based on Conceptual Spaces. MIT Press (2014)

    Google Scholar 

  15. Gärdenfors, P., Williams, M.A.: Reasoning about categories in conceptual spaces. In: IJCAI, pp. 385–392. Citeseer (2001)

    Google Scholar 

  16. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 38(1), 142–158 (2015)

    Article  Google Scholar 

  17. Goyal, A., Bengio, Y.: Inductive biases for deep learning of higher-level cognition. Proc. Roy. Soc. A 478(2266), 20210068 (2022)

    Article  MathSciNet  Google Scholar 

  18. Hafting, T., Fyhn, M., Molden, S., Moser, M.B., Moser, E.I.: Microstructure of a spatial map in the entorhinal cortex. Nature 436(7052), 801–806 (2005)

    Article  Google Scholar 

  19. Kirillov, A., et al.: Segment anything. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4015–4026 (2023)

    Google Scholar 

  20. Kornblith, H.: Inductive inference and its natural ground: An essay in naturalistic epistemology. Mit Press (1995)

    Google Scholar 

  21. Kriegeskorte, N., Douglas, P.K.: Cognitive computational neuroscience. Nat. Neurosci. 21(9), 1148–1160 (2018)

    Article  Google Scholar 

  22. Lake, B.M., Ullman, T.D., Tenenbaum, J.B., Gershman, S.J.: Building machines that learn and think like people. Behav. Brain Sci. 40 (2017)

    Google Scholar 

  23. Lakoff, G.: Women, Fire, and Dangerous Things: What Categories Reveal About the Mind. University of Chicago Press (2008)

    Google Scholar 

  24. Langacker, R.W.: Foundations of cognitive grammar: Volume I: Theoretical prerequisites, vol. 1. Stanford university press (1987)

    Google Scholar 

  25. Lenat, D.B., Guha, R.V.: Building large knowledge-based systems; representation and inference in the Cyc project. Addison-Wesley Longman Publishing Co., Inc (1989)

    Google Scholar 

  26. Lipton, Z.C.: The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery. Queue 16(3), 31–57 (2018)

    Article  Google Scholar 

  27. Liu, W., et al.: Ssd: single shot multibox detector. In: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14, pp. 21–37. Springer (2016)

    Google Scholar 

  28. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. Advances in neural information processing systems 30 (2017)

    Google Scholar 

  29. Luo, S., Bimbo, J., Dahiya, R., Liu, H.: Robotic tactile perception of object properties: a review. Mechatronics 48, 54–67 (2017)

    Article  Google Scholar 

  30. Malt, B.C.: An on-line investigation of prototype and exemplar strategies in classification. J. Exp. Psychol. Learn. Mem. Cogn. 15(4), 539 (1989)

    Article  Google Scholar 

  31. Miller, G.A.: Wordnet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  32. Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019)

    Article  MathSciNet  Google Scholar 

  33. Morgenstern, Y., Hartmann, F., Schmidt, F., Tiedemann, H., Prokott, E., Maiello, G., Fleming, R.W.: An image-computable model of human visual shape similarity. PLoS Comput. Biol. 17(6), e1008981 (2021)

    Article  Google Scholar 

  34. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  35. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should i trust you?” explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

    Google Scholar 

  36. Rosch, E., Mervis, C.B.: Family resemblances: studies in the internal structure of categories. Cogn. Psychol. 7(4), 573–605 (1975)

    Article  Google Scholar 

  37. Rosch, E., Mervis, C.B., Gray, W.D., Johnson, D.M., Boyes-Braem, P.: Basic objects in natural categories. Cogn. Psychol. 8(3), 382–439 (1976)

    Article  Google Scholar 

  38. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034 (2013)

  39. Sloman, S.A., Love, B.C., Ahn, W.K.: Feature centrality and conceptual coherence. Cogn. Sci. 22(2), 189–228 (1998)

    Article  Google Scholar 

  40. Speer, R., Chin, J., Havasi, C.: Conceptnet 5.5: an open multilingual graph of general knowledge. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  41. Tenenbaum, J.B., Griffiths, T.L., Kemp, C.: Theory-based bayesian models of inductive learning and reasoning. Trends Cogn. Sci. 10(7), 309–318 (2006)

    Article  Google Scholar 

  42. Tenenbaum, J.B., Kemp, C., Griffiths, T.L., Goodman, N.D.: How to grow a mind: statistics, structure, and abstraction. Science 331(6022), 1279–1285 (2011)

    Google Scholar 

  43. Tomsett, R., Braines, D., Harborne, D., Preece, A., Chakraborty, S.: Interpretable to whom? a role-based model for analyzing interpretable machine learning systems. arXiv preprint arXiv:1806.07552 (2018)

  44. Zhang, Q., et al.: Towards an integrated evaluation framework for XAI: an experimental study. Procedia Comput. Sci. 207, 3884–3893 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alistair Nottle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Galetić, V., Sheldon, D., Nottle, A. (2024). Conceptual Knowledge Modelling for Human-AI Teaming in Data-Frugal Industrial Environments. In: Cabrera, I.P., Ferré, S., Obiedkov, S. (eds) Conceptual Knowledge Structures. CONCEPTS 2024. Lecture Notes in Computer Science(), vol 14914. Springer, Cham. https://doi.org/10.1007/978-3-031-67868-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-67868-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-67867-7

  • Online ISBN: 978-3-031-67868-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics