[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Framework for Formal Probabilistic Risk Assessment Using HOL Theorem Proving

  • Conference paper
  • First Online:
Intelligent Computer Mathematics (CICM 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14960))

Included in the following conference series:

  • 238 Accesses

Abstract

It is indispensable to identify an occurrence and a possible consequence of any undesirable events in different components/sub-systems of safety-critical systems, such as nuclear power plants and smart power grids that may often lead to a catastrophic accident and thus may result into financial losses and severe injuries. This process requires assessing the probabilities of occurrence of these events and is widely known as Probabilistic Risk Assessment (PRA). The frequently used methods for conducting the PRA are Event Tree Analysis (ETA), Functional Block Diagrams (FBD) and Cause Consequence Diagrams (CCD) (using Fault Trees (FT) and Reliability Block Diagrams (RBD)). We propose to use higher-Order-Logic (HOL) theorem proving for performing the formal PRA of safety-critical systems. In this paper, we present recent developments towards this direction and a roadmap towards a successful development of a framework for formal reasoning support for ETs, FBDs and CCDs in a HOL theorem prover.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 59.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://hvg.ece.concordia.ca/projects/prob-it/pr10/.

  2. 2.

    The HOL4 code for the ET formalization can be found at https://github.com/hvg-concordia/ET.

  3. 3.

    The HOL4 code for the FBD formalization can be found at https://github.com/hvg-concordia/FBD.

  4. 4.

    The HOL4 code for the FT-based CCD formalization can be found at https://github.com/hvg-concordia/CCD.

  5. 5.

    The HOL4 code for the RBD-based CCD formalization can be found at https://github.com/hvg-concordia/CCD_RBD.

References

  1. Abdelghany, M., Ahmad, W., Tahar, S.: Event tree reliability analysis of electrical power generation network using formal techniques. In: Electric Power and Energy Conference, pp. 1–7. IEEE (2020)

    Google Scholar 

  2. Abdelghany, M., Ahmad, W., Tahar, S.: Event tree reliability analysis of safety-critical systems using theorem proving. IEEE Syst. J. 16(2), 2899–2910 (2021)

    Article  Google Scholar 

  3. Abdelghany, M., Ahmad, W., Tahar, S., Nethula, S.: ETMA: an efficient tool for event trees modeling and analysis. In: International Systems Conference, pp. 1–8. IEEE (2020)

    Google Scholar 

  4. Abdelghany, M., Tahar, S.: Cause-consequence diagram reliability analysis using formal techniques with application to electrical power networks. IEEE Access 9, 23929–23943 (2021)

    Article  Google Scholar 

  5. Abdelghany, M., Tahar, S.: Formalization of RBD-based cause consequence analysis in HOL. In: Kamareddine, F., Sacerdoti Coen, C. (eds.) CICM 2021. LNCS (LNAI), vol. 12833, pp. 47–64. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81097-9_4

    Chapter  Google Scholar 

  6. Abdelghany, M., Tahar, S.: Formal probabilistic risk assessment of a nuclear power plant. In: Formal Techniques for Safety-Critical Systems, pp. 80–87 (2022)

    Google Scholar 

  7. Abdelghany, M., Tahar, S.: Formalization of functional block diagrams using HOL theorem proving. In: Lima, L., Molnár, V. (eds.) SBMF 2022. LNCS, vol. 13768, pp. 22–35. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22476-8_2

    Chapter  Google Scholar 

  8. Abdelghany, M., Tahar, S.: Reliability analysis of smart grids using formal methods. In: Fathi, M., Zio, E., Pardalos, P.M. (eds.) Handbook of Smart Energy Systems, pp. 147–163. Springer, Cham (2023). https://doi.org/10.1007/978-3-030-97940-9_81

    Chapter  Google Scholar 

  9. Abdelghany, M.W.E.: Formal probabilistic risk assessment using theorem proving with applications in power systems. Ph.D. thesis, Concordia University, Montreal, QC, Canada (2021)

    Google Scholar 

  10. Ahmad, W.: Formal dependability analysis using higher-order-logic theorem proving. Ph.D. thesis, National University of Sciences & Technology, Islamabad, Pakistan (2017)

    Google Scholar 

  11. Ahmed, W., Hasan, O.: Towards formal fault tree analysis using theorem proving. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015. LNCS (LNAI), vol. 9150, pp. 39–54. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20615-8_3

    Chapter  Google Scholar 

  12. Ahmed, W., Hasan, O., Tahar, S.: Formalization of reliability block diagrams in higher-order logic. J. Appl. Log. 18, 19–41 (2016)

    Article  MathSciNet  Google Scholar 

  13. Andrews, J.D., Ridley, L.M.: Application of the cause-consequence diagram method to static systems. Reliab. Eng. Syst. Saf. 75(1), 47–58 (2002)

    Article  Google Scholar 

  14. Clarke, E.M.: Model checking. In: Ramesh, S., Sivakumar, G. (eds.) FSTTCS 1997. LNCS, vol. 1346, pp. 54–56. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0058022

    Chapter  Google Scholar 

  15. Clarke, E.M., Klieber, W., Nováček, M., Zuliani, P.: Model checking and the state explosion problem. In: Meyer, B., Nordio, M. (eds.) LASER 2011. LNCS, vol. 7682, pp. 1–30. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35746-6_1

    Chapter  Google Scholar 

  16. Elderhalli, Y.: Dynamic dependability analysis using HOL theorem proving with application in multiprocessor systems. Ph.D. thesis, Concordia University, Montreal, QC, Canada (2019)

    Google Scholar 

  17. Elderhalli, Y., Ahmad, W., Hasan, O., Tahar, S.: Probabilistic analysis of dynamic fault trees using HOL theorem proving. J. Appl. Logics—IfCoLog J. Logics Appl. 6(3) (2019)

    Google Scholar 

  18. Elderhalli, Y., Hasan, O., Tahar, S.: A formally verified algebraic approach for dynamic reliability block diagrams. In: Ait-Ameur, Y., Qin, S. (eds.) ICFEM 2019. LNCS, vol. 11852, pp. 253–269. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32409-4_16

    Chapter  Google Scholar 

  19. Elderhalli, Y., Hasan, O., Tahar, S.: A framework for formal dynamic dependability analysis using HOL theorem proving. In: Benzmüller, C., Miller, B. (eds.) CICM 2020. LNCS (LNAI), vol. 12236, pp. 105–122. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53518-6_7

    Chapter  Google Scholar 

  20. Gardoni, P.: Risk and Reliability Analysis. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52425-2

    Book  Google Scholar 

  21. Haimes, Y.Y.: Risk Modeling, Assessment, and Management. Wiley, Hoboken (2005)

    Google Scholar 

  22. Harrison, J., Urban, J., Wiedijk, F.: History of interactive theorem proving. In: Computational Logic, vol. 9, pp. 135–214 (2014)

    Google Scholar 

  23. Hasan, O., Tahar, S.: Formal verification methods. In: Encyclopedia of Information Science and Technology, 3rd edn, pp. 7162–7170. IGI Global (2015)

    Google Scholar 

  24. Hixenbaugh, A.: Fault Tree for Safety. Seattle: The Boeing Company, D6 53604 (1968)

    Google Scholar 

  25. Hutchins, G.: ISO \(31000\): \(2018\) Enterprise Risk Management. Greg Hutchins (2018)

    Google Scholar 

  26. Kumamoto, H.: Satisfying Safety Goals by Probabilistic Risk Assessment. Springer, London (2007). https://doi.org/10.1007/978-1-84628-682-7

    Book  Google Scholar 

  27. Leitch, M.: ISO \(31000\): \(2009\)-the new international standard on risk management. Risk Anal. 30(6), 887 (2010)

    Article  Google Scholar 

  28. Nỳvlt, O., Rausand, M.: Dependencies in event trees analyzed by petri nets. Reliab. Eng. Syst. Saf. 104, 45–57 (2012)

    Article  Google Scholar 

  29. Ortmeier, F., Reif, W., Schellhorn, G.: Deductive cause-consequence analysis (DCCA). IFAC Proc. Vol. 38(1), 62–67 (2005)

    Article  Google Scholar 

  30. Papazoglou, I.A.: Functional block diagrams and automated construction of event trees. Reliab. Eng. Syst. Saf. 61(3), 185–214 (1998)

    Article  Google Scholar 

  31. Papazoglou, I.A.: Mathematical foundations of event trees. Reliab. Eng. Syst. Saf. 61(3), 169–183 (1998)

    Article  Google Scholar 

  32. Rasmussen, J.: Trends in human reliability analysis. Ergonomics 28(8), 1185–1195 (1985)

    Article  Google Scholar 

  33. Reisig, W.: Petri Nets: An Introduction, vol. 4. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-69968-9

    Book  Google Scholar 

  34. Ridley, L.M.: Dependency modelling using fault-tree and cause-consequence analysis. Ph.D. thesis, Loughborough University, UK (2000)

    Google Scholar 

  35. Staley, J., Sutcliffe, P.: Reliability block diagram analysis. Microelectron. Reliab. 13(1), 33–47 (1974)

    Article  Google Scholar 

  36. Wall, I.: Probabilistic risk assessment in nuclear power plant regulation. Nucl. Eng. Des. 60(1), 11–24 (1980)

    Article  Google Scholar 

  37. Xin, B., Wan, L., Yu, J., Dang, W.: Basic event probability determination and risk assessment based on cause-consequence analysis method. In: Journal of Physics: Conference Series, vol. 1549, p. 052094. IOP Publishing (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Rashid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abdelghany, M., Rashid, A., Tahar, S. (2024). A Framework for Formal Probabilistic Risk Assessment Using HOL Theorem Proving. In: Kohlhase, A., Kovács, L. (eds) Intelligent Computer Mathematics. CICM 2024. Lecture Notes in Computer Science(), vol 14960. Springer, Cham. https://doi.org/10.1007/978-3-031-66997-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-66997-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-66996-5

  • Online ISBN: 978-3-031-66997-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics