Abstract
Clinical narratives are a rich resource of patient-based information, where the automatic extraction of specific types of entities is still challenging due to various idiosyncrasies of non-standardized routine documentation. Much of the literature in clinical natural language processing (NLP) has been focused on English language. In this work, we focus on de-identified German-language clinical narratives. Predominant supervised approaches in the area of NLP, specifically named entity recognition (NER), need an expressive set of annotations for robust sequence modeling via a machine learning approach. This work investigates to what extent three main model types, conditional random fields (CRFs), bidirectional long short-term memory (BiLSTM) and Transformer models (BERT), perform on a limited set of annotations for medication information extraction in a specific clinical domain. The top performing feature, an optimized CRF model exploiting embedding representations out of a natively pre-trained language model using fastText, performed best with an overall F1 score 0.91. A multilingual BERT model incorporating German language resources reached an overall F1 score of 0.88, followed by the BiLSTM approach with an F1 score of 0.81. BERT based end-to-end systems nearly reach the performance of an optimized CRF approach. The results highlight the importance of pre-trained clinical language models available in languages other than English for fast, high performing, problem domain adaption.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akbik, A., Blythe, D., Vollgraf, R.: Contextual string embeddings for sequence labeling. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1638–1649. Association for Computational Linguistics, Santa Fe, New Mexico, USA (Aug 2018). https://aclanthology.org/C18-1139
Alfattni, G., Belousov, M., Peek, N., Nenadic, G.: Extracting drug names and associated attributes from discharge summaries: text mining study. JMIR Med. Inform. 9(5), e24678 (2021)
Caliskan, D., et al.: First steps to evaluate an NLP tool’s medication extraction accuracy from discharge letters. Stud. Health Technol. Inform. 278, 224–230 (2021)
Denny, J.C., Spickard, A., 3rd., Johnson, K.B., Peterson, N.B., Peterson, J.F., Miller, R.A.: Evaluation of a method to identify and categorize section headers in clinical documents. J. Am. Med. Inform. Assoc. 16(6), 806–815 (2009)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
Doan, S., Bastarache, L., Klimkowski, S., Denny, J.C., Xu, H.: Integrating existing natural language processing tools for medication extraction from discharge summaries. J. Am. Med. Inform. Assoc. 17(5), 528–531 (2010)
Frei, J., Kramer, F.: GERNERMED: an open German medical NER model. Softw. Impacts 11, 100212 (2022)
Goeuriot, L., et al.: CLEF eHealth evaluation lab 2021. In: Hiemstra, D., Moens, M.-F., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds.) Advances in Information Retrieval: 43rd European Conference on IR Research, ECIR 2021, Virtual Event, March 28 – April 1, 2021, Proceedings, Part II, pp. 593–600. Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-72240-1_69
Grave, E., Bojanowski, P., Gupta, P., Joulin, A., Mikolov, T.: Learning word vectors for 157 languages. arXiv preprint arXiv:1802.06893 (2018)
Hahn, U., Oleynik, M.: Medical information extraction in the age of deep learning. Yearb. Med. Inform. 29(1), 208–220 (2020)
Henry, S., Buchan, K., Filannino, M., Stubbs, A., Uzuner, Ö.: 2018 n2c2 shared task on adverse drug events and medication extraction in electronic health records. J. Am. Med. Inform. Assoc. 27(1), 3–12 (2020)
Hochreiter, S., Schmidhuber, J.: Long Short-Term Memory. Neural Computation 9(8), 1735–1780 (11 1997). https://doi.org/10.1162/neco.1997.9.8.1735, https://doi.org/10.1162/neco.1997.9.8.1735
Johnson, A., Bulgarelli, L., Pollard, T., Horng, S., Celi, L.A., Mark, IV, R.: Mimic-iv (version 0.4). PhysioNet (2020)
Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text classification. arXiv preprint arXiv:1607.01759 (2016)
Kim, Y., Meystre, S.M.: Ensemble method-based extraction of medication and related information from clinical texts. J. Am. Med. Inform. Assoc. 27(1), 31–38 (2020)
Kreuzthaler, M., Daumke, P., Schulz, S.: Semantic retrieval and navigation in clinical document collections. Stud. Health Technol. Inform. 212, 9–14 (2015)
Mahajan, D., Liang, J.J., Tsou, C.H., Uzuner, Ö.: Overview of the 2022 n2c2 shared task on contextualized medication event extraction in clinical notes. J. Biomed. Inform. 144, 104432 (2023). https://doi.org/10.1016/j.jbi.2023.104432, https://www.sciencedirect.com/science/article/pii/S1532046423001533
McCallum, A.K.: Mallet: A machine learning for language toolkit (2002) (2002)
Meystre, S.M., Savova, G.K., Kipper-Schuler, K.C., Hurdle, J.F.: Extracting information from textual documents in the electronic health record: a review of recent research. Yearb. Med. Inform. 17(1), 128–144 (2008)
Meystre, S.M., Thibault, J., Shen, S., Hurdle, J.F., South, B.R.: Automatically detecting medications and the reason for their prescription in clinical narrative text documents. Stud. Health Technol. Inform. 160(Pt 2), 944–948 (2010)
Névéol, A., Dalianis, H., Velupillai, S., Savova, G., Zweigenbaum, P.: Clinical natural language processing in languages other than English: opportunities and challenges. J. Biomed. Semantics 9(1), 12 (2018)
Palmer, A., Schneider, N., Schluter, N., Emerson, G., Herbelot, A., Zhu, X. (eds.): Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021). Association for Computational Linguistics, Online (Aug 2021). https://aclanthology.org/2021.semeval-1.0
Patrick, J., Li, M.: High accuracy information extraction of medication information from clinical notes: 2009 i2b2 medication extraction challenge. J. Am. Med. Inform. Assoc. 17(5), 524–527 (2010)
Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014). http://www.aclweb.org/anthology/D14-1162
Pratt, W., Yetisgen-Yildiz, M.: A study of biomedical concept identification: MetaMap vs. people. In: AMIA Annual Symposium Proceedings, pp. 529–533 (2003)
Roller, R., et al.: Information extraction models for German clinical text. In: 2020 IEEE International Conference on Healthcare Informatics (ICHI), pp. 1–2. IEEE (2020)
Roller, R., et al.: A fine-grained corpus annotation schema of German nephrology records. In: Proceedings of the Clinical Natural Language Processing Workshop (ClinicalNLP), pp. 69–77 (2016)
Sang, E.T.K., Buchholz, S.: Introduction to the conll-2000 shared task: Chunking. In: Proceedings of the Fourth Conference on Computational Natural Language Learning and of the Second Learning Language in Logic Workshop (CONLL/LLL 2000). Lissabon, Portugal, 13–14 september 2000, pp. 127–132. ACL (2000)
Schütze, H., Manning, C.D., Raghavan, P.: Introduction to information retrieval, vol. 39. Cambridge University Press Cambridge (2008)
Sohn, S., Clark, C., Halgrim, S.R., Murphy, S.P., Chute, C.G., Liu, H.: MedXN: an open source medication extraction and normalization tool for clinical text. J. Am. Med. Inform. Assoc. 21(5), 858–865 (2014)
Soysal, E., et al.: CLAMP-a toolkit for efficiently building customized clinical natural language processing pipelines. J. Am. Med. Inform. Assoc. 25(3), 331–336 (2018)
Starlinger, J., Kittner, M., Blankenstein, O., Leser, U.: How to improve information extraction from German medical records. IT - Information Technology 59(4), 610 (Jan 2017)
Tao, C., Filannino, M., Uzuner, Ö.: Prescription extraction using CRFs and word embeddings. J. Biomed. Inform. 72, 60–66 (2017)
Tito Svenstrup, D., Hansen, J., Winther, O.: Hash embeddings for efficient word representations. In: Advances in Neural Information Processing Systems 30 (2017)
Uzuner, Ö., Solti, I., Cadag, E.: Extracting medication information from clinical text. J. Am. Med. Inform. Assoc. 17(5), 514–518 (2010)
Weeks, H.L., et al.: medExtractR: a targeted, customizable approach to medication extraction from electronic health records. J. Am. Med. Inform. Assoc. 27(3), 407–418 (2020)
Xiao, C., Choi, E., Sun, J.: Opportunities and challenges in developing deep learning models using electronic health records data: a systematic review. J. Am. Med. Inform. Assoc. 25(10), 1419–1428 (2018)
Xu, H., Stenner, S.P., Doan, S., Johnson, K.B., Waitman, L.R., Denny, J.C.: MedEx: a medication information extraction system for clinical narratives. J. Am. Med. Inform. Assoc. 17(1), 19–24 (2010)
Xu, J., Lee, H.J., Ji, Z., Wang, J., Wei, Q., Xu, H.: UTH_CCB system for adverse drug reaction extraction from drug labels at TAC-ADR 2017. In: TAC. clamp.uth.edu (2017)
Yang, X., Bian, J., Hogan, W.R., Wu, Y.: Clinical concept extraction using transformers. J. Am. Med. Inform. Assoc. 27(12), 1935–1942 (2020)
Acknowledgements
This work was part of the Digital Biomarkers for Precision Medicine (DBM4PM) project within the K1 COMET Competence Center CBmed, funded by the Federal Ministry of Transport, Innovation and Technology (BMVIT); the Federal Ministry of Science, Research and Economy (BMWFW); Land Steiermark (Department 12, Business and Innovation); the Styrian Business Promotion Agency (SFG); and the Vienna Business Agency. The COMET program is executed by the FFG. The work was mandated via the IRB (Ethics Committee) votes 32-194 ex 19/20 and 30-496 ex 17/18 from the Medical University of Graz. We acknowledge the financial support from Roche Diagnostics.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Sharma, V., Thalhammer, A., Kugic, A., Schulz, S., Kreuzthaler, M. (2024). Sequence-Model-Based Medication Extraction from Clinical Narratives in German. In: Finkelstein, J., Moskovitch, R., Parimbelli, E. (eds) Artificial Intelligence in Medicine. AIME 2024. Lecture Notes in Computer Science(), vol 14844. Springer, Cham. https://doi.org/10.1007/978-3-031-66538-7_33
Download citation
DOI: https://doi.org/10.1007/978-3-031-66538-7_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-66537-0
Online ISBN: 978-3-031-66538-7
eBook Packages: Computer ScienceComputer Science (R0)