[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Mutant Texts: A Technique for Uncovering Unexpected Inconsistencies in Large-Scale Vision-Language Models

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14557))

Included in the following conference series:

  • 841 Accesses

Abstract

Recently, Vision-Language Models (VLMs) trained on large-scale noisy data have shown strong generalization abilities on many downstream tasks. In this paper, we introduce a new technique for uncovering unexpected inconsistencies in VLMs, which lead to the formulation of new research questions on how to improve VLMs. Specifically, we propose that performance on original texts should be compared with that of ‘mutant texts’, carefully-designed variants of the original texts. In contrast to text perturbations used to study robustness, ‘mutant texts’ represent large changes in the original texts that impact semantics. We present two types of example mutant texts: one-word-only (OWO) mutants, which replace the original text with one of the words it contains and plus-one-word (POW) mutants, which add a word to the original text. The mutant texts allow us to discover the existence of dominating words in texts that correspond to images. The embedding of a dominating words is closer to the image embedding than the embedding of the entire original text. The existence of dominating words reflects underlying inconsistency in a VLM’s embedding space, a possible source of risk for bias undetected without the mutant text technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 47.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 59.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brown, K.S., et al.: Investigating the extent to which distributional semantic models capture a broad range of semantic relations. Cogn. Sci. 47(5), e13291 (2023)

    Article  Google Scholar 

  2. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: ICML, vol. 119, pp. 1597–1607 (2020)

    Google Scholar 

  3. Cherti, M., et al.: Reproducible scaling laws for contrastive language-image learning. In: CVPR, pp. 2818–2829 (2023)

    Google Scholar 

  4. Dosovitskiy, A., et al.: An image is worth 16 \(\times \) 16 words: transformers for image recognition at scale. In: ICLR (2021)

    Google Scholar 

  5. Dou, Z., et al.: An empirical study of training end-to-end vision-and-language transformers. In: CVPR, pp. 18145–18155 (2022)

    Google Scholar 

  6. Faghri, F., Fleet, D.J., Kiros, J.R., Fidler, S.: VSE++: improving visual-semantic embeddings with hard negatives. In: BMVC, p. 12 (2018)

    Google Scholar 

  7. Frome, A., et al.: DeViSE: a deep visual-semantic embedding model. In: Burges, C.J.C., Bottou, L., Ghahramani, Z., Weinberger, K.Q. (eds.) NeurIPS, pp. 2121–2129 (2013)

    Google Scholar 

  8. Gui, L., Wang, B., Huang, Q., Hauptmann, A., Bisk, Y., Gao, J.: KAT: a knowledge augmented transformer for vision-and-language. In: The Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 956–968 (2022)

    Google Scholar 

  9. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.B.: Momentum contrast for unsupervised visual representation learning. In: CVPR, pp. 9726–9735 (2020)

    Google Scholar 

  10. Jia, C., et al.: Scaling up visual and vision-language representation learning with noisy text supervision. In: Meila, M., Zhang, T. (eds.) ICML, vol. 139, pp. 4904–4916 (2021)

    Google Scholar 

  11. Karpathy, A., Li, F.: Deep visual-semantic alignments for generating image descriptions. In: CVPR, pp. 3128–3137 (2015)

    Google Scholar 

  12. Kim, W., Son, B., Kim, I.: ViLT: vision-and-language transformer without convolution or region supervision. In: Meila, M., Zhang, T. (eds.) ICML, vol. 139, pp. 5583–5594 (2021)

    Google Scholar 

  13. Li, J., Li, D., Xiong, C., Hoi, S.C.H.: BLIP: bootstrapping language-image pre-training for unified vision-language understanding and generation. In: Chaudhuri, K., Jegelka, S., Song, L., Szepesvári, C., Niu, G., Sabato, S. (eds.) ICML, vol. 162, pp. 12888–12900 (2022)

    Google Scholar 

  14. Li, L.H., Yatskar, M., Yin, D., Hsieh, C.J., Chang, K.W.: VisualBERT: a simple and performant baseline for vision and language. arXiv preprint (2019)

    Google Scholar 

  15. Li, L.H., Yatskar, M., Yin, D., Hsieh, C.J., Chang, K.W.: What does BERT with vision look at? In: ACL, pp. 5265–5275 (2020)

    Google Scholar 

  16. Li, X., et al.: Oscar: object-semantics aligned pre-training for vision-language tasks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12375, pp. 121–137. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58577-8_8

    Chapter  Google Scholar 

  17. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  18. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)

    Google Scholar 

  19. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: ICLR (2013)

    Google Scholar 

  20. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: NeurIPS, pp. 3111–3119 (2013)

    Google Scholar 

  21. van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint (2018)

    Google Scholar 

  22. Pennington, J., Socher, R., Manning, C.: GloVe: global vectors for word representation. In: EMNLP, pp. 1532–1543 (2014)

    Google Scholar 

  23. Qiu, J., et al.: Are multimodal models robust to image and text perturbations? arXiv preprint (2022)

    Google Scholar 

  24. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: Meila, M., Zhang, T. (eds.) ICML, vol. 139, pp. 8748–8763 (2021)

    Google Scholar 

  25. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-conditional image generation with CLIP latents. arXiv preprint (2022)

    Google Scholar 

  26. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: CVPR (2022)

    Google Scholar 

  27. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: CVPR, pp. 815–823 (2015)

    Google Scholar 

  28. Schuhmann, C., et al.: LAION-5B: an open large-scale dataset for training next generation image-text models. In: NeurIPS, vol. 35, pp. 25278–25294 (2022)

    Google Scholar 

  29. Schuhmann, C., et al.: LAION-400M: open dataset of CLIP-filtered 400 million image-text pairs. arXiv preprint: abs/2111.02114 (2021)

    Google Scholar 

  30. Shtedritski, A., Rupprecht, C., Vedaldi, A.: What does CLIP know about a red circle? Visual prompt engineering for VLMs. In: ICCV, pp. 11987–11997 (2023)

    Google Scholar 

  31. Thomee, B., et al.: YFCC100M: the new data in multimedia research. Commun. ACM 59, 64–73 (2016)

    Article  Google Scholar 

  32. Weston, J., Bengio, S., Usunier, N.: Large scale image annotation: learning to rank with joint word-image embeddings. Mach. Learn. 81, 21–35 (2010)

    Article  MathSciNet  Google Scholar 

  33. Wolfe, R., Banaji, M.R., Caliskan, A.: Evidence for hypodescent in visual semantic AI. In: ACM Conference on Fairness, Accountability, and Transparency (2022)

    Google Scholar 

  34. Yasunaga, M., et al.: Retrieval-augmented multimodal language modeling. arXiv preprint (2022)

    Google Scholar 

  35. Young, P., Lai, A., Hodosh, M., Hockenmaier, J.: From image descriptions to visual denotations: new similarity metrics for semantic inference over event descriptions. Trans. Assoc. Comput. Linguist. 2, 67–78 (2014)

    Article  Google Scholar 

  36. Zhai, X., et al.: LiT: zero-shot transfer with locked-image text tuning. In: CVPR (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingliang Liang or Martha Larson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liang, M., Liu, Z., Larson, M. (2024). Mutant Texts: A Technique for Uncovering Unexpected Inconsistencies in Large-Scale Vision-Language Models. In: Rudinac, S., et al. MultiMedia Modeling. MMM 2024. Lecture Notes in Computer Science, vol 14557. Springer, Cham. https://doi.org/10.1007/978-3-031-53302-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53302-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53301-3

  • Online ISBN: 978-3-031-53302-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics