Abstract
In the paper, a new machine-learning technique is proposed to recognize movement patterns. The efficient system designed for this purpose uses an artificial neural network (ANN) model implemented on a microcontroller to classify boxing punches. Artificial intelligence (AI) enables the processing of sophisticated and complex patterns, and the X-CUBE-AI package allows the use of these possibilities in portable microprocessor systems. The input data to the network are linear accelerations and angular velocities read from the sensor mounted on the boxer’s wrist. By using simple time-domain measurements without extracting signal features, the classification is performed in real-time. An extensive experiment was carried out for two groups with different levels of boxing skills. The developed model demonstrated high efficiency in the identification of individual types of blows.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abiodun, O.I., Jantan, A., Omolara, A.E., Dada, K.V., Mohamed, N.A., Arshad, H.: State-of-the-art in artificial neural network applications: a survey. Heliyon 4(11), e00938 (2018). https://doi.org/10.1016/j.heliyon.2018.e00938
Bin, L., Liang, W., Guosheng, Y.: A graph total variation regularized softmax for text generation (2021). https://arxiv.org/abs/2101.00153
Chen, M., Li, Y., Luo, X., Wang, W., Wang, L., Zhao, W.: A novel human activity recognition scheme for smart health using multilayer extreme learning machine. IEEE Internet Things J. 6(2), 1410–1418 (2018)
Chollet, F.: Deep Learning with Python, 1st edn. Manning Publications Co., USA (2017)
de Vita, F., Nocera, G., Bruneo, D., Tomaselli, V., Giacalone, D., Das, S.K.: Quantitative analysis of deep leaf: a plant disease detector on the smart edge. In: 2020 IEEE International Conference on Smart Computing (SMARTCOMP), pp. 49–56 (2020). https://doi.org/10.1109/SMARTCOMP50058.2020.00027
Dukhan, M., Ablavatski, A.: Two-pass softmax algorithm. In: 2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 386–395 (2020)
El Jerjawi, N.S., Abu-Naser, S.S.: Diabetes prediction using artificial neural network. J. Adv. Sci. 124, 1–10 (2018)
Falbo, V., et al.: Analyzing machine learning on mainstream microcontrollers. In: Saponara, S., De Gloria, A. (eds.) ApplePies 2019. LNEE, vol. 627, pp. 103–108. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37277-4_12
Fisher, E., Ivry, A., Alimi, R., Weiss, E.: Smartphone based indoor localization using permanent magnets and artificial intelligence for pattern recognition. AIP Adv. 11(1), 015122 (2021). https://doi.org/10.1063/9.0000076
Gao, B., Pavel, L.: On the properties of the softmax function with application in game theory and reinforcement learning. http://arxiv.org/abs/1704.00805
Ho, Y., Wookey, S.: The real-world-weight cross-entropy loss function: modeling the costs of mislabeling. IEEE Access 8, 4806–4813 (2020). https://doi.org/10.1109/ACCESS.2019.2962617
Kasiri, S., Fookes, C., Sridharan, S., Morgan, S.: Fine-grained action recognition of boxing punches from depth imagery. Comput. Vis. Image Underst. 159, 143–153 (2017)
Kasiri-Bidhendi, S., Fookes, C., Morgan, S., Martin, D.T., Sridharan, S.: Combat sports analytics: boxing punch classification using overhead depthimagery. In: 2015 IEEE International Conference on Image Processing, pp. 4545–4549. IEEE (2015)
Khasanshin, I.: Application of an artificial neural network to automate the measurement of kinematic characteristics of punches in boxing. Appl. Sci. 11(3), 1223 (2021)
Kico, I., Liarokapis, F.: Comparison of trajectories and quaternions of folk dance movements using dynamic time warping. In: 2019 11th International Conference on Virtual Worlds and Games for Serious Applications (VS-Games), pp. 1–4 (2019). https://doi.org/10.1109/VS-Games.2019.8864604
Kouretas, I., Paliouras, V.: Hardware implementation of a softmax-like function for deep learning. Technologies 8(3) (2020). https://doi.org/10.3390/technologies8030046
Kusner, M.J., Hernández-Lobato, J.M.: Gans for sequences of discrete elements with the gumbel-softmax distribution (2016)
Lara, O.D., Labrador, M.A.: A survey on human activity recognition using wearable sensors. IEEE Commun. Surv. Tutor. 15(3), 1192–1209 (2013). https://doi.org/10.1109/SURV.2012.110112.00192
Magno, M., Pritz, M., Mayer, P., Benini, L.: Deepemote: towards multi-layer neural networks in a low power wearable multi-sensors bracelet. In: 2017 7th IEEE International Workshop on Advances in Sensors and Interfaces, pp. 32–37 (2017)
Malawski, F.: Depth versus inertial sensors in real-time sports analysis: a case study on fencing. IEEE Sens. J. 21(4), 5133–5142 (2021). https://doi.org/10.1109/JSEN.2020.3036436
Marciniak, T., Dabrowski, A., Puchalski, R., Dratwiak, D., Marciniak, W.: Application of STM32F410 microcontroller for presentation of digital signal processing. Przeglad Elektrotechniczny (Electr. Rev.) 95(10), 118–120 (2019). https://doi.org/10.15199/48.2019.10.26. (in Polish)
Matusiak, M., Ostalczyk, P.: Problems in solving fractional differential equations in a microcontroller implementation of an FOPID controller. Arch. Electr. Eng. 68(3), 565–577 (2019). https://doi.org/10.24425/aee.2019.129342
Merenda, M., Porcaro, C., Iero, D.: Edge machine learning for AI-enabled IoT devices: a review. Sensors 20(9) (2020). https://doi.org/10.3390/s20092533
Mundt, M., et al.: Estimation of gait mechanics based on simulated and measured IMU data using an artificial neural network. Front. Bioeng. Biotechnol. 8 (2020)
Omcirk, D., Vetrovsky, T., Padecky, J., Vanbelle, S., Malecek, J., Tufano, J.J.: Punch trackers: correct recognition depends on punch type and training experience. Sensors 21(9) (2021). https://doi.org/10.3390/s21092968, https://www.mdpi.com/1424-8220/21/9/2968
O’Brien, M.K., et al.: Augmenting clinical outcome measures of gait and balance with a single inertial sensor in age-ranged healthy adults. Sensors 19(20) (2019). https://doi.org/10.3390/s19204537
Puchalski, R., Bondyra, A., Giernacki, W., Zhang, Y.: Actuator fault detection and isolation system for multirotor unmanned aerial vehicles. In: 2022 26th International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 364–369 (2022). https://doi.org/10.1109/MMAR55195.2022.9874283
Qiao, J., Li, F., Han, H., Li, W.: Constructive algorithm for fully connected cascade feedforward neural networks. Neurocomputing 182, 154–164 (2016)
STMicroelectronics: DB3788, X-CUBE-AI, Data brief, Artificial Intelligence (AI) software expansion for STM32Cube Rev 6 (2020). https://www.st.com/en/embedded-software/x-cube-ai.html#documentation
STMicroelectronics: UM2526, User manual, Getting started with X-CUBE-AI expansion package for artificial intelligence (AI) Rev 6 (2020). https://www.st.com/en/embedded-software/x-cube-ai.html#documentation
Uddin, M.Z., Hassan, M.M., Alsanad, A., Savaglio, C.: A body sensor data fusion and deep recurrent neural network-based behavior recognition approach for robust healthcare. Inf. Fusion 55, 105–115 (2020). https://doi.org/10.1016/j.inffus.2019.08.004
Wagner, T., Jäger, J., Wolff, V., Fricke-Neuderth, K.: A machine learning driven approach for multivariate timeseries classification of box punches using smartwatch accelerometer sensordata. In: 2019 Innovations in Intelligent Systems and Applications Conference (ASYU), pp. 1–6. IEEE (2019)
Wang, X., Magno, M., Cavigelli, L., Benini, L.: FANN-on-MCU: an open-source toolkit for energy-efficient neural network inference at the edge of the internet of things. IEEE Internet Things J. 7(5), 4403–4417 (2020). https://doi.org/10.1109/JIOT.2020.2976702
Worsey, M.T.O., Espinosa, H.G., Shepherd, J.B., Thiel, D.V.: An evaluation of wearable inertial sensor configuration and supervised machine learning models for automatic punch classification in boxing. IoT 1(2), 360–381 (2020). https://doi.org/10.3390/iot1020021, https://www.mdpi.com/2624-831X/1/2/21
Yang, J., Nguyen, M.N., San, P.P., Li, X., Krishnaswamy, S.: Deep convolutional neural networks on multichannel time series for human activity recognition. In: IJCAI, vol. 15, pp. 3995–4001. Buenos Aires, Argentina (2015)
Ye, M., Shen, J., Zhang, X., Yuen, P.C., Chang, S.F.: Augmentation invariant and instance spreading feature for softmax embedding. IEEE Trans. Pattern Anal. Mach. Intell. 1–16 (2020). https://doi.org/10.1109/TPAMI.2020.3013379
Zhang, Z., Sabuncu, M.R.: Generalized cross entropy loss for training deep neural networks with noisy labels (2018)
Acknowledgment
This research was financially supported as a statutory work of Poznan University of Technology (grant no. 0214/SBAD/0241). The Authors thank Dr. Tomasz Marciniak for the idea and help in carrying out the research and all participants who willingly agreed to conduct the tests.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Puchalski, R., Giernacki, W. (2024). Movement Pattern Recognition in Boxing Using Raw Inertial Measurements. In: Pereira, A.I., Mendes, A., Fernandes, F.P., Pacheco, M.F., Coelho, J.P., Lima, J. (eds) Optimization, Learning Algorithms and Applications. OL2A 2023. Communications in Computer and Information Science, vol 1982 . Springer, Cham. https://doi.org/10.1007/978-3-031-53036-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-53036-4_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-53035-7
Online ISBN: 978-3-031-53036-4
eBook Packages: Computer ScienceComputer Science (R0)