[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Movement Pattern Recognition in Boxing Using Raw Inertial Measurements

  • Conference paper
  • First Online:
Optimization, Learning Algorithms and Applications (OL2A 2023)

Abstract

In the paper, a new machine-learning technique is proposed to recognize movement patterns. The efficient system designed for this purpose uses an artificial neural network (ANN) model implemented on a microcontroller to classify boxing punches. Artificial intelligence (AI) enables the processing of sophisticated and complex patterns, and the X-CUBE-AI package allows the use of these possibilities in portable microprocessor systems. The input data to the network are linear accelerations and angular velocities read from the sensor mounted on the boxer’s wrist. By using simple time-domain measurements without extracting signal features, the classification is performed in real-time. An extensive experiment was carried out for two groups with different levels of boxing skills. The developed model demonstrated high efficiency in the identification of individual types of blows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 47.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 59.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abiodun, O.I., Jantan, A., Omolara, A.E., Dada, K.V., Mohamed, N.A., Arshad, H.: State-of-the-art in artificial neural network applications: a survey. Heliyon 4(11), e00938 (2018). https://doi.org/10.1016/j.heliyon.2018.e00938

    Article  Google Scholar 

  2. Bin, L., Liang, W., Guosheng, Y.: A graph total variation regularized softmax for text generation (2021). https://arxiv.org/abs/2101.00153

  3. Chen, M., Li, Y., Luo, X., Wang, W., Wang, L., Zhao, W.: A novel human activity recognition scheme for smart health using multilayer extreme learning machine. IEEE Internet Things J. 6(2), 1410–1418 (2018)

    Article  Google Scholar 

  4. Chollet, F.: Deep Learning with Python, 1st edn. Manning Publications Co., USA (2017)

    Google Scholar 

  5. de Vita, F., Nocera, G., Bruneo, D., Tomaselli, V., Giacalone, D., Das, S.K.: Quantitative analysis of deep leaf: a plant disease detector on the smart edge. In: 2020 IEEE International Conference on Smart Computing (SMARTCOMP), pp. 49–56 (2020). https://doi.org/10.1109/SMARTCOMP50058.2020.00027

  6. Dukhan, M., Ablavatski, A.: Two-pass softmax algorithm. In: 2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 386–395 (2020)

    Google Scholar 

  7. El Jerjawi, N.S., Abu-Naser, S.S.: Diabetes prediction using artificial neural network. J. Adv. Sci. 124, 1–10 (2018)

    Google Scholar 

  8. Falbo, V., et al.: Analyzing machine learning on mainstream microcontrollers. In: Saponara, S., De Gloria, A. (eds.) ApplePies 2019. LNEE, vol. 627, pp. 103–108. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37277-4_12

    Chapter  Google Scholar 

  9. Fisher, E., Ivry, A., Alimi, R., Weiss, E.: Smartphone based indoor localization using permanent magnets and artificial intelligence for pattern recognition. AIP Adv. 11(1), 015122 (2021). https://doi.org/10.1063/9.0000076

    Article  Google Scholar 

  10. Gao, B., Pavel, L.: On the properties of the softmax function with application in game theory and reinforcement learning. http://arxiv.org/abs/1704.00805

  11. Ho, Y., Wookey, S.: The real-world-weight cross-entropy loss function: modeling the costs of mislabeling. IEEE Access 8, 4806–4813 (2020). https://doi.org/10.1109/ACCESS.2019.2962617

    Article  Google Scholar 

  12. Kasiri, S., Fookes, C., Sridharan, S., Morgan, S.: Fine-grained action recognition of boxing punches from depth imagery. Comput. Vis. Image Underst. 159, 143–153 (2017)

    Article  Google Scholar 

  13. Kasiri-Bidhendi, S., Fookes, C., Morgan, S., Martin, D.T., Sridharan, S.: Combat sports analytics: boxing punch classification using overhead depthimagery. In: 2015 IEEE International Conference on Image Processing, pp. 4545–4549. IEEE (2015)

    Google Scholar 

  14. Khasanshin, I.: Application of an artificial neural network to automate the measurement of kinematic characteristics of punches in boxing. Appl. Sci. 11(3), 1223 (2021)

    Article  Google Scholar 

  15. Kico, I., Liarokapis, F.: Comparison of trajectories and quaternions of folk dance movements using dynamic time warping. In: 2019 11th International Conference on Virtual Worlds and Games for Serious Applications (VS-Games), pp. 1–4 (2019). https://doi.org/10.1109/VS-Games.2019.8864604

  16. Kouretas, I., Paliouras, V.: Hardware implementation of a softmax-like function for deep learning. Technologies 8(3) (2020). https://doi.org/10.3390/technologies8030046

  17. Kusner, M.J., Hernández-Lobato, J.M.: Gans for sequences of discrete elements with the gumbel-softmax distribution (2016)

    Google Scholar 

  18. Lara, O.D., Labrador, M.A.: A survey on human activity recognition using wearable sensors. IEEE Commun. Surv. Tutor. 15(3), 1192–1209 (2013). https://doi.org/10.1109/SURV.2012.110112.00192

    Article  Google Scholar 

  19. Magno, M., Pritz, M., Mayer, P., Benini, L.: Deepemote: towards multi-layer neural networks in a low power wearable multi-sensors bracelet. In: 2017 7th IEEE International Workshop on Advances in Sensors and Interfaces, pp. 32–37 (2017)

    Google Scholar 

  20. Malawski, F.: Depth versus inertial sensors in real-time sports analysis: a case study on fencing. IEEE Sens. J. 21(4), 5133–5142 (2021). https://doi.org/10.1109/JSEN.2020.3036436

    Article  Google Scholar 

  21. Marciniak, T., Dabrowski, A., Puchalski, R., Dratwiak, D., Marciniak, W.: Application of STM32F410 microcontroller for presentation of digital signal processing. Przeglad Elektrotechniczny (Electr. Rev.) 95(10), 118–120 (2019). https://doi.org/10.15199/48.2019.10.26. (in Polish)

  22. Matusiak, M., Ostalczyk, P.: Problems in solving fractional differential equations in a microcontroller implementation of an FOPID controller. Arch. Electr. Eng. 68(3), 565–577 (2019). https://doi.org/10.24425/aee.2019.129342

  23. Merenda, M., Porcaro, C., Iero, D.: Edge machine learning for AI-enabled IoT devices: a review. Sensors 20(9) (2020). https://doi.org/10.3390/s20092533

  24. Mundt, M., et al.: Estimation of gait mechanics based on simulated and measured IMU data using an artificial neural network. Front. Bioeng. Biotechnol. 8 (2020)

    Google Scholar 

  25. Omcirk, D., Vetrovsky, T., Padecky, J., Vanbelle, S., Malecek, J., Tufano, J.J.: Punch trackers: correct recognition depends on punch type and training experience. Sensors 21(9) (2021). https://doi.org/10.3390/s21092968, https://www.mdpi.com/1424-8220/21/9/2968

  26. O’Brien, M.K., et al.: Augmenting clinical outcome measures of gait and balance with a single inertial sensor in age-ranged healthy adults. Sensors 19(20) (2019). https://doi.org/10.3390/s19204537

  27. Puchalski, R., Bondyra, A., Giernacki, W., Zhang, Y.: Actuator fault detection and isolation system for multirotor unmanned aerial vehicles. In: 2022 26th International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 364–369 (2022). https://doi.org/10.1109/MMAR55195.2022.9874283

  28. Qiao, J., Li, F., Han, H., Li, W.: Constructive algorithm for fully connected cascade feedforward neural networks. Neurocomputing 182, 154–164 (2016)

    Article  Google Scholar 

  29. STMicroelectronics: DB3788, X-CUBE-AI, Data brief, Artificial Intelligence (AI) software expansion for STM32Cube Rev 6 (2020). https://www.st.com/en/embedded-software/x-cube-ai.html#documentation

  30. STMicroelectronics: UM2526, User manual, Getting started with X-CUBE-AI expansion package for artificial intelligence (AI) Rev 6 (2020). https://www.st.com/en/embedded-software/x-cube-ai.html#documentation

  31. Uddin, M.Z., Hassan, M.M., Alsanad, A., Savaglio, C.: A body sensor data fusion and deep recurrent neural network-based behavior recognition approach for robust healthcare. Inf. Fusion 55, 105–115 (2020). https://doi.org/10.1016/j.inffus.2019.08.004

    Article  Google Scholar 

  32. Wagner, T., Jäger, J., Wolff, V., Fricke-Neuderth, K.: A machine learning driven approach for multivariate timeseries classification of box punches using smartwatch accelerometer sensordata. In: 2019 Innovations in Intelligent Systems and Applications Conference (ASYU), pp. 1–6. IEEE (2019)

    Google Scholar 

  33. Wang, X., Magno, M., Cavigelli, L., Benini, L.: FANN-on-MCU: an open-source toolkit for energy-efficient neural network inference at the edge of the internet of things. IEEE Internet Things J. 7(5), 4403–4417 (2020). https://doi.org/10.1109/JIOT.2020.2976702

    Article  Google Scholar 

  34. Worsey, M.T.O., Espinosa, H.G., Shepherd, J.B., Thiel, D.V.: An evaluation of wearable inertial sensor configuration and supervised machine learning models for automatic punch classification in boxing. IoT 1(2), 360–381 (2020). https://doi.org/10.3390/iot1020021, https://www.mdpi.com/2624-831X/1/2/21

  35. Yang, J., Nguyen, M.N., San, P.P., Li, X., Krishnaswamy, S.: Deep convolutional neural networks on multichannel time series for human activity recognition. In: IJCAI, vol. 15, pp. 3995–4001. Buenos Aires, Argentina (2015)

    Google Scholar 

  36. Ye, M., Shen, J., Zhang, X., Yuen, P.C., Chang, S.F.: Augmentation invariant and instance spreading feature for softmax embedding. IEEE Trans. Pattern Anal. Mach. Intell. 1–16 (2020). https://doi.org/10.1109/TPAMI.2020.3013379

  37. Zhang, Z., Sabuncu, M.R.: Generalized cross entropy loss for training deep neural networks with noisy labels (2018)

    Google Scholar 

Download references

Acknowledgment

This research was financially supported as a statutory work of Poznan University of Technology (grant no. 0214/SBAD/0241). The Authors thank Dr. Tomasz Marciniak for the idea and help in carrying out the research and all participants who willingly agreed to conduct the tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Giernacki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Puchalski, R., Giernacki, W. (2024). Movement Pattern Recognition in Boxing Using Raw Inertial Measurements. In: Pereira, A.I., Mendes, A., Fernandes, F.P., Pacheco, M.F., Coelho, J.P., Lima, J. (eds) Optimization, Learning Algorithms and Applications. OL2A 2023. Communications in Computer and Information Science, vol 1982 . Springer, Cham. https://doi.org/10.1007/978-3-031-53036-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53036-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53035-7

  • Online ISBN: 978-3-031-53036-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics