[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Identification of Late Blight in Potato Leaves Using Image Processing and Machine Learning

  • Conference paper
  • First Online:
Optimization, Learning Algorithms and Applications (OL2A 2023)

Abstract

Potato is a widely consumed food worldwide, and its productivity has increased due to new varieties and the use of technologies related to irrigation, nutrition, and soil preparation, among others. However, diseases such as late blight disease can often affect the crop, impacting many farmers around the world. As a way to help production, technology in agriculture is increasing. Among the various computational techniques that can be applied, those based on digital image processing associated with machine learning algorithms stand out, producing excellent results. This work aimed to develop a methodology for recognizing late blight disease in potato leaves using digital image processing techniques and machine learning algorithms. It was possible to obtain promising results. The experiments were carried out in a set of images from a public database containing images of healthy and unhealthy leaves (with late blight). We compare the performance of machine learning algorithms using feature vectors obtained with SIFT algorithm and RGB descriptors. The best performance was using the Decision Tree algorithm and SIFT vectors, with 99.24% of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 47.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 59.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://plantvillage.psu.edu/.

  2. 2.

    https://docs.opencv.org/2.4/modules/imgproc/doc/histograms.html?highlight=equalizehist.

References

  1. Abba: Situação atual da produção de batata no Brasil. Batata Show 20(58) (2020)

    Google Scholar 

  2. Arnaud, S.E., Rehema, N., Aoki, S., Kananu, M.L.: Comparison of deep learning architectures for late blight and early blight disease detection on potatoes. Open J. Appl. Sci. 12(5), 723–743 (2022)

    Google Scholar 

  3. AWS: Amazon sagemaker documentation (2023). https://docs.aws.amazon.com/sagemaker/index.html

  4. Biodo, D.R.: Classificação de doenças em batata baseado em imagens das folhas de batata utilizando Deep Learning. Masters, UFSCar (2021)

    Google Scholar 

  5. Bonaccorso, G.: Machine Learning Algorithms. Packt Publishing, Birmingham (2017)

    Google Scholar 

  6. Carmo, G., Castoldi, R., Martins, G., Castoldi, R., Zilvani, A.: Detecção de podridão mole em alface por Pectobacterium carotovorum subsp. carotovorum por algoritmos de aprendizado de máquina a partir de imagens multiespectrais. Master in agriculture and geospatial information, Universidade Federal de Uberlândia (2021)

    Google Scholar 

  7. Conover, W.J.: Practical Nonparametric Statistics, 3rd edn. Wiley, Hoboken (1999)

    Google Scholar 

  8. Escovedo, T.: Machine learning; conceitos e modelos - parte i: Aprendizado supervisionado (2020). https://tatianaesc.medium.com/machine-learning-conceitos-e-modelos-f0373bf4f445

  9. Ferri, C., Hernández-Orallo, J., Modroiu, R.: An experimental comparison of performance measures for classification. Pattern Recogn. Lett. 30(1), 27–38 (2009)

    Article  Google Scholar 

  10. Gonzalez, R., Woods, R.: Processamento digital de imagens, vol. 3. Pearson Prentice Hall, Upper Saddle River (2010)

    Google Scholar 

  11. Hossin, M., Sulaiman, M.N.: A review on evaluation metrics for data classification evaluations. Int. J. Data Mining Knowl. Manag. Process 5(2), 1 (2015)

    Article  Google Scholar 

  12. Iniyan, S., Jebakumar, R., Mangalraj, P., Mohit, M., Nanda, A.: Plant disease identification and detection using support vector machines and artificial neural networks. In: Dash, S.S., Lakshmi, C., Das, S., Panigrahi, B.K. (eds.) Artificial Intelligence and Evolutionary Computations in Engineering Systems. AISC, vol. 1056, pp. 15–27. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-0199-9_2

    Chapter  Google Scholar 

  13. Islam, M., Dinh, A., Wahid, K., Bhowmik, P.: Detection of potato diseases using image segmentation and multiclass support vector machine, pp. 1–4 (2017). https://doi.org/10.1109/CCECE.2017.7946594

  14. Kadir, A., Nugroho, L., Susanto, A.: Performance improvement of leaf identification system using principal component analysis. J. Theor. Appl. Inf. Technol. 44, 113–124 (2021)

    Google Scholar 

  15. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60, 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94

    Article  Google Scholar 

  16. Hughes, D., Salathe, M.: An open access repository of images on plant health to enable the development of mobile disease diagnostics (2015). https://arxiv.org/abs/1511.08060

  17. Mada, M.S.: Decision trees algorithms (2017). https://medium.com/deep-math-machine-learning-ai/chapter-4-decision-trees-algorithms-b93975f7a1f1

  18. Ngugi, L.C., Abdelwahab, M., Abo-Zahhad, M.: A new approach to learning and recognizing leaf diseases from individual lesions using convolutional neural networks. Inf. Process. Agric. 10(1), 11–27 (2023)

    Google Scholar 

  19. Pallathadka, H., Ravipat, P., Phashinam, G.S.K., Kassanuk, T., Sanchez, T.: Application of machine learning techniques in rice leaf disease detection. Mater. Today Proc. 51, 2277–2280 (2022)

    Article  Google Scholar 

  20. Paul, A., Mukherjee, D.P., Das, P., Gangopadhyay, A., Chintha, A.R., Kundu, S.: Improved random forest for classification. IEEE Trans. Image Process. 27(8), 4012–4024 (2018). https://doi.org/10.1109/TIP.2018.2834830

    Article  MathSciNet  Google Scholar 

  21. Pires, W.O., Fernandes, R.C., de Paula Filho, P.L., Candido Junior, A., Teixeira, J.P.: Leaf-based species recognition using convolutional neural networks. In: Pereira, A.I., et al. (eds.) OL2A 2021. CCIS, vol. 1488, pp. 367–380. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91885-9_27

    Chapter  Google Scholar 

  22. Rampazo, A.: Cenário atual da cultura da batata e os principais desafios (2020). https://www.agrolink.com.br

  23. Russel, S., Norvig, P.: Artificial Intelligence - A Modern Approach, 4th edn. Pearson, Boston (2022)

    Google Scholar 

  24. Sanjeev, K., Gupta, N.K., Jeberson, W., Paswan, S.: Early prediction of potato leaf diseases using ANN classifier. Orient. J. Comput. Sci. Technol. 13(2), 129–134 (2021)

    Article  Google Scholar 

  25. Trindade, L., Basso, F.: Investigando técnicas de processamento de imagens com IA na detecção de ferrugem em folhas de soja. Professional master’s in software engineering, Universidade Federal do Pampa (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly Lais Wiggers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leepkaln, R.L., Ré, A.M.d., Wiggers, K.L. (2024). Identification of Late Blight in Potato Leaves Using Image Processing and Machine Learning. In: Pereira, A.I., Mendes, A., Fernandes, F.P., Pacheco, M.F., Coelho, J.P., Lima, J. (eds) Optimization, Learning Algorithms and Applications. OL2A 2023. Communications in Computer and Information Science, vol 1982 . Springer, Cham. https://doi.org/10.1007/978-3-031-53036-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53036-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53035-7

  • Online ISBN: 978-3-031-53036-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics