Abstract
Potato is a widely consumed food worldwide, and its productivity has increased due to new varieties and the use of technologies related to irrigation, nutrition, and soil preparation, among others. However, diseases such as late blight disease can often affect the crop, impacting many farmers around the world. As a way to help production, technology in agriculture is increasing. Among the various computational techniques that can be applied, those based on digital image processing associated with machine learning algorithms stand out, producing excellent results. This work aimed to develop a methodology for recognizing late blight disease in potato leaves using digital image processing techniques and machine learning algorithms. It was possible to obtain promising results. The experiments were carried out in a set of images from a public database containing images of healthy and unhealthy leaves (with late blight). We compare the performance of machine learning algorithms using feature vectors obtained with SIFT algorithm and RGB descriptors. The best performance was using the Decision Tree algorithm and SIFT vectors, with 99.24% of accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abba: Situação atual da produção de batata no Brasil. Batata Show 20(58) (2020)
Arnaud, S.E., Rehema, N., Aoki, S., Kananu, M.L.: Comparison of deep learning architectures for late blight and early blight disease detection on potatoes. Open J. Appl. Sci. 12(5), 723–743 (2022)
AWS: Amazon sagemaker documentation (2023). https://docs.aws.amazon.com/sagemaker/index.html
Biodo, D.R.: Classificação de doenças em batata baseado em imagens das folhas de batata utilizando Deep Learning. Masters, UFSCar (2021)
Bonaccorso, G.: Machine Learning Algorithms. Packt Publishing, Birmingham (2017)
Carmo, G., Castoldi, R., Martins, G., Castoldi, R., Zilvani, A.: Detecção de podridão mole em alface por Pectobacterium carotovorum subsp. carotovorum por algoritmos de aprendizado de máquina a partir de imagens multiespectrais. Master in agriculture and geospatial information, Universidade Federal de Uberlândia (2021)
Conover, W.J.: Practical Nonparametric Statistics, 3rd edn. Wiley, Hoboken (1999)
Escovedo, T.: Machine learning; conceitos e modelos - parte i: Aprendizado supervisionado (2020). https://tatianaesc.medium.com/machine-learning-conceitos-e-modelos-f0373bf4f445
Ferri, C., Hernández-Orallo, J., Modroiu, R.: An experimental comparison of performance measures for classification. Pattern Recogn. Lett. 30(1), 27–38 (2009)
Gonzalez, R., Woods, R.: Processamento digital de imagens, vol. 3. Pearson Prentice Hall, Upper Saddle River (2010)
Hossin, M., Sulaiman, M.N.: A review on evaluation metrics for data classification evaluations. Int. J. Data Mining Knowl. Manag. Process 5(2), 1 (2015)
Iniyan, S., Jebakumar, R., Mangalraj, P., Mohit, M., Nanda, A.: Plant disease identification and detection using support vector machines and artificial neural networks. In: Dash, S.S., Lakshmi, C., Das, S., Panigrahi, B.K. (eds.) Artificial Intelligence and Evolutionary Computations in Engineering Systems. AISC, vol. 1056, pp. 15–27. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-0199-9_2
Islam, M., Dinh, A., Wahid, K., Bhowmik, P.: Detection of potato diseases using image segmentation and multiclass support vector machine, pp. 1–4 (2017). https://doi.org/10.1109/CCECE.2017.7946594
Kadir, A., Nugroho, L., Susanto, A.: Performance improvement of leaf identification system using principal component analysis. J. Theor. Appl. Inf. Technol. 44, 113–124 (2021)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60, 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94
Hughes, D., Salathe, M.: An open access repository of images on plant health to enable the development of mobile disease diagnostics (2015). https://arxiv.org/abs/1511.08060
Mada, M.S.: Decision trees algorithms (2017). https://medium.com/deep-math-machine-learning-ai/chapter-4-decision-trees-algorithms-b93975f7a1f1
Ngugi, L.C., Abdelwahab, M., Abo-Zahhad, M.: A new approach to learning and recognizing leaf diseases from individual lesions using convolutional neural networks. Inf. Process. Agric. 10(1), 11–27 (2023)
Pallathadka, H., Ravipat, P., Phashinam, G.S.K., Kassanuk, T., Sanchez, T.: Application of machine learning techniques in rice leaf disease detection. Mater. Today Proc. 51, 2277–2280 (2022)
Paul, A., Mukherjee, D.P., Das, P., Gangopadhyay, A., Chintha, A.R., Kundu, S.: Improved random forest for classification. IEEE Trans. Image Process. 27(8), 4012–4024 (2018). https://doi.org/10.1109/TIP.2018.2834830
Pires, W.O., Fernandes, R.C., de Paula Filho, P.L., Candido Junior, A., Teixeira, J.P.: Leaf-based species recognition using convolutional neural networks. In: Pereira, A.I., et al. (eds.) OL2A 2021. CCIS, vol. 1488, pp. 367–380. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91885-9_27
Rampazo, A.: Cenário atual da cultura da batata e os principais desafios (2020). https://www.agrolink.com.br
Russel, S., Norvig, P.: Artificial Intelligence - A Modern Approach, 4th edn. Pearson, Boston (2022)
Sanjeev, K., Gupta, N.K., Jeberson, W., Paswan, S.: Early prediction of potato leaf diseases using ANN classifier. Orient. J. Comput. Sci. Technol. 13(2), 129–134 (2021)
Trindade, L., Basso, F.: Investigando técnicas de processamento de imagens com IA na detecção de ferrugem em folhas de soja. Professional master’s in software engineering, Universidade Federal do Pampa (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Leepkaln, R.L., Ré, A.M.d., Wiggers, K.L. (2024). Identification of Late Blight in Potato Leaves Using Image Processing and Machine Learning. In: Pereira, A.I., Mendes, A., Fernandes, F.P., Pacheco, M.F., Coelho, J.P., Lima, J. (eds) Optimization, Learning Algorithms and Applications. OL2A 2023. Communications in Computer and Information Science, vol 1982 . Springer, Cham. https://doi.org/10.1007/978-3-031-53036-4_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-53036-4_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-53035-7
Online ISBN: 978-3-031-53036-4
eBook Packages: Computer ScienceComputer Science (R0)