[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Using Dynamic Data Driven Cyberinfrastructure for Next Generation Disaster Intelligence

  • Conference paper
  • First Online:
Dynamic Data Driven Applications Systems (DDDAS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13984))

Included in the following conference series:

  • 330 Accesses

Abstract

Wildfires and related disasters are increasing globally, making highly destructive megafires a part of our lives more frequently. A common observation across these large events is that fire behavior is changing, making applied datadriven fire research more important and time critical. Significant improvements towards modeling wildland fires and the dynamics of fire related environmental hazards and socio-economic impacts can be made through intelligent integration of modern data and computing technologies with techniques for data management, machine learning and artificial intelligence. However, there are many challenges and opportunities in integration of the scientific discoveries and datadriven methods for hazards with the advances in technology and computing in a way that provides and enables different modalities of sensing and computing. The WIFIRE cyberinfrastructure took the first steps to tackle this problem with a goal to create an integrated infrastructure, data and visualization services, and workflows for wildfire mitigation, monitoring, simulation, and response. Today, WIFIRE provides an end-to-end management infrastructure from the data sensing and collection to artificial intelligence and dynamic data-driven modeling efforts using a continuum of computing methods that integrate edge, cloud, and high-performance computing. Through this cyberinfrastructure, the WIFIRE project provides data driven knowledge for a wide range of public and private sector users, enabling scientific, municipal, and educational use. This paper summarizes the talk reviewing our recent work on building this dynamic data driven cyberinfrastructure and impactful application solution architectures that showcase integration of a variety of existing technologies and collaborative expertise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 59.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Silva, J., et al.: A systematic review and bibliometric analysis of wildland fire behavior modeling. Fluids 7, 374 (2022). https://doi.org/10.3390/fluids7120374

    Article  Google Scholar 

  2. Lee, J.G., Kang, M.: Geospatial big data: challenges and opportunities. Big Data Res. 2(2), 74–81 (2015). https://doi.org/10.1016/j.bdr.2015.01.003

    Article  Google Scholar 

  3. Fire Immediate Response System Workshop Report, Moore Foundation (2019). https://www.moore.org/docs/default-source/default-document-library/2019-firs-workshopreport.pdf

  4. Altintas, I., Bet al.: Towards an integrated cyberinfrastructure for scalable data-driven monitoring, dynamic prediction and resilience of wildfires. In: Proceedings  of International Conference on Computational Science, ICCS 2015, pp. 1633–1642 (2015)

    Google Scholar 

  5. WIFIRE Homepage. https://wifire.ucsd.edu/, (Accessed April 2023)

  6. WIFIRE Commons Homepage. https://wifire.ucsd.edu/commons, (Accessed April 2023)

  7. Wilkinson, M., Dumontier, M., Aalbersberg, I., et al.: The FAIR guiding principles for scientific data management and stewardship. Sci Data 3, 160018 (2016). https://doi.org/10.1038/sdata.2016.18

    Article  Google Scholar 

  8. CKAN Homepage. https://ckan.org/, (Accessed April 2023)

  9. Altintas, I.: Using dynamic data driven cyberinfrastructure for next generation disaster intelligence. In: Darema, F., Blasch, E., Ravela, S., Aved, A. (eds.) Dynamic Data Driven Applications Systems: Third International Conference, DDDAS 2020,  pp. 18–21. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-61725-7_4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilkay Altintas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Altintas, I. (2024). Using Dynamic Data Driven Cyberinfrastructure for Next Generation Disaster Intelligence. In: Blasch, E., Darema, F., Aved, A. (eds) Dynamic Data Driven Applications Systems. DDDAS 2022. Lecture Notes in Computer Science, vol 13984. Springer, Cham. https://doi.org/10.1007/978-3-031-52670-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52670-1_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52669-5

  • Online ISBN: 978-3-031-52670-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics