Abstract
Colour specification can be carried out using different instruments or tools. The biggest limitation of these existing instruments consists of the region in which they can be applied. Indeed, they can only work locally in small regions on the surface of the object under examination. This implicates a slow process, errors while repeating the procedure and sometimes the impossibility of measuring the colour depending on the object’s surface. We present a new way to perform colour specification in the CIELab colour space from RGB images by using Convolutional Generative Model that performs the transformation needed to remove all the shading effect on the image, producing an albedo image which is used to estimate the CIELab value for each pixel. In this work, we examine two different models one based on autoencoder and another based on GANs. In order to train and validate our models we present also a dataset of synthetic images which have been acquired using a Blender–based tool. The results obtained using our model on the generated dataset prove the performance of this method, which led to a low average colour error (\(\varDelta E00\)) for both the validation and test sets. Finally, a real-scenario test is conducted on the head of the god Hades and a half-bust depicting the goddess Persephone, both are from the archaeological Museum of Aidone (Italy).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Allegra, D., et al.: A method to improve the color rendering accuracy in cultural heritage: preliminary results. In: Journal of Physics: Conference Series, vol. 2204, p. 012057. IOP Publishing (2022)
Bajaj, K., Singh, D.K., Ansari, M.A.: Autoencoders based deep learner for image denoising. Procedia Comput. Sci. 171, 1535–1541 (2020)
Bank, D., Koenigstein, N., Giryes, R.: Autoencoders. arXiv preprint: arXiv:2003.05991 (2020)
Bell, S., Bala, K., Snavely, N.: Intrinsic images in the wild. ACM Trans. Graph. (TOG) 33(4), 1–12 (2014)
Chen, Q., Koltun, V.: A simple model for intrinsic image decomposition with depth cues. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 241–248 (2013)
Chen, Y., Liu, D., Liang, J.: A new method for RGB to CIELAB color space transformation based on Markov chain monte Carlo. In: MIPPR 2013: Parallel Processing of Images and Optimization and Medical Imaging Processing, vol. 8920, pp. 102–108. SPIE (2013)
Chu, S.J., Trushkowsky, R.D., Paravina, R.D.: Dental color matching instruments and systems. Review of clinical and research aspects. J. Dentistry 38, e2–e16 (2010)
Fan, Q., Yang, J., Hua, G., Chen, B., Wipf, D.: Revisiting deep intrinsic image decompositions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8944–8952 (2018)
Fdhal, N., Kyan, M., Androutsos, D., Sharma, A.: Color space transformation from RGB to CIELAB using neural networks. In: Muneesawang, P., Wu, F., Kumazawa, I., Roeksabutr, A., Liao, M., Tang, X. (eds.) PCM 2009. LNCS, vol. 5879, pp. 1011–1017. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10467-1_97
Finlayson, G., Hordley, S., Schaefer, G., Tian, G.Y.: Illuminant and device invariant colour using histogram equalisation. Pattern Recogn. 38(2), 179–190 (2005)
Forsyth, D., Rock, J.J.: Intrinsic image decomposition using paradigms. IEEE Trans. Pattern Anal. Mach. Intell. 44(11), 7624–7637 (2021)
Giuseppe, F., Dario, A., Anna, G., Filippo, S.: CIELab color measurement through RGB-D images. In: Rousseau, J.J., Kapralos, B. (eds.) Pattern Recognition, Computer Vision, and Image Processing. Lecture Notes in Computer Science, vol. 13645, pp. 15–20. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-37731-0_2
Giuseppe, F., Gueli, A.M., Stanco, F., Allegra, D.: PixelwiseColourSpecification. https://github.com/giuseppefrn/PixelwiseColourSpecification/
Gong, D., et al.: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1705–1714 (2019)
Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)
Gueli, A.M., Pedullà, E., Pasquale, S., La Rosa, G.R., Rapisarda, E.: Color specification of two new resin composites and influence of stratification on their chromatic perception. Color. Res. Appl. 42(5), 684–692 (2017)
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Iturbe, A., Cachero, R., Canal, D., Martos, A.: Virtual digitization of caves with parietal paleolithic art from Bizkaia. Scientific analysis and dissemination through new visualization techniques. Virtual Archaeol. Rev. 9(18), 57–65 (2018)
Karsch, K., Hedau, V., Forsyth, D., Hoiem, D.: Rendering synthetic objects into legacy photographs. ACM Trans. Graph. (TOG) 30(6), 1–12 (2011)
Kawanabe, T., et al.: Quantification of tongue Colour using machine learning in Kampo medicine. Eur. J. Integr. Med. 8(6), 932–941 (2016)
Korytkowski, P., Olejnik-Krugly, A.: Precise capture of colors in cultural heritage digitization. Color. Res. Appl. 42(3), 333–336 (2017)
Kovacs, B., Bell, S., Snavely, N., Bala, K.: Shading annotations in the wild. Comput. Vis. Pattern Recogn. (CVPR) (2017)
Labrecque, L.I., Milne, G.R.: Exciting red and competent blue: the importance of color in marketing. J. Acad. Mark. Sci. 40(5), 711–727 (2012)
Leon, K., Mery, D., Pedreschi, F., Leon, J.: Color measurement in lab units from RGB digital images. Food Res. Int. 39(10), 1084–1091 (2006)
MacDonald, L.: Color space transformation using neural networks. In: Color and Imaging Conference, vol. 2019, pp. 153–158. Society for Imaging Science and Technology (2019)
Milotta, F.L.M., et al.: Challenges in automatic Munsell color profiling for cultural heritage. Pattern Recogn. Lett. 131, 135–141 (2020)
Murmann, L., Gharbi, M., Aittala, M., Durand, F.: A multi-illumination dataset of indoor object appearance. In: 2019 IEEE International Conference on Computer Vision (ICCV) (2019)
Odena, A., Dumoulin, V., Olah, C.: Deconvolution and checkerboard artifacts. Distill (2016). https://doi.org/10.23915/distill.00003, http://distill.pub/2016/deconv-checkerboard
Ruiz, J.F., Pereira, J.: The colours of rock art. Analysis of colour recording and communication systems in rock art research. J. Archaeol. Sci. 50, 338–349 (2014)
Singh, S.: Impact of color on marketing. Manage. Decis. 44(6), 783–789 (2006)
Sønderby, C.K., Caballero, J., Theis, L., Shi, W., Huszár, F.: Amortised map inference for image super-resolution. arXiv preprint: arXiv:1610.04490 (2016)
Stanco, F., Battiato, S., Gallo, G.: Digital Imaging for Cultural Heritage Preservation. Analysis, Restoration, and Reconstruction of Ancient Artworks (2011)
Theis, L., Shi, W., Cunningham, A., Huszár, F.: Lossy image compression with compressive autoencoders. arXiv preprint: arXiv:1703.00395 (2017)
Velastegui, R., Pedersen, M.: CMYK-CIELAB color space transformation using machine learning techniques. In: London Imaging Meeting, vol. 2021, pp. 73–77. Society for Imaging Science and Technology (2021)
Acknowledgement
The research activity was funded by the University of Catania (Italy) through the PIAno di inCEntivi per la RIcerca di Ateneo (PIACERI) linea 2 project CLEAR - CoLor rEndering Accuracy in cultuRal heritage.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Giuseppe, F., Gueli, A.M., Filippo, S., Allegra, D. (2024). Convolutional Generative Model for Pixel–Wise Colour Specification for Cultural Heritage. In: Foresti, G.L., Fusiello, A., Hancock, E. (eds) Image Analysis and Processing - ICIAP 2023 Workshops. ICIAP 2023. Lecture Notes in Computer Science, vol 14366. Springer, Cham. https://doi.org/10.1007/978-3-031-51026-7_37
Download citation
DOI: https://doi.org/10.1007/978-3-031-51026-7_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-51025-0
Online ISBN: 978-3-031-51026-7
eBook Packages: Computer ScienceComputer Science (R0)