[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Convolutional Generative Model for Pixel–Wise Colour Specification for Cultural Heritage

  • Conference paper
  • First Online:
Image Analysis and Processing - ICIAP 2023 Workshops (ICIAP 2023)

Abstract

Colour specification can be carried out using different instruments or tools. The biggest limitation of these existing instruments consists of the region in which they can be applied. Indeed, they can only work locally in small regions on the surface of the object under examination. This implicates a slow process, errors while repeating the procedure and sometimes the impossibility of measuring the colour depending on the object’s surface. We present a new way to perform colour specification in the CIELab colour space from RGB images by using Convolutional Generative Model that performs the transformation needed to remove all the shading effect on the image, producing an albedo image which is used to estimate the CIELab value for each pixel. In this work, we examine two different models one based on autoencoder and another based on GANs. In order to train and validate our models we present also a dataset of synthetic images which have been acquired using a Blender–based tool. The results obtained using our model on the generated dataset prove the performance of this method, which led to a low average colour error (\(\varDelta E00\)) for both the validation and test sets. Finally, a real-scenario test is conducted on the head of the god Hades and a half-bust depicting the goddess Persephone, both are from the archaeological Museum of Aidone (Italy).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allegra, D., et al.: A method to improve the color rendering accuracy in cultural heritage: preliminary results. In: Journal of Physics: Conference Series, vol. 2204, p. 012057. IOP Publishing (2022)

    Google Scholar 

  2. Bajaj, K., Singh, D.K., Ansari, M.A.: Autoencoders based deep learner for image denoising. Procedia Comput. Sci. 171, 1535–1541 (2020)

    Article  Google Scholar 

  3. Bank, D., Koenigstein, N., Giryes, R.: Autoencoders. arXiv preprint: arXiv:2003.05991 (2020)

  4. Bell, S., Bala, K., Snavely, N.: Intrinsic images in the wild. ACM Trans. Graph. (TOG) 33(4), 1–12 (2014)

    Article  Google Scholar 

  5. Chen, Q., Koltun, V.: A simple model for intrinsic image decomposition with depth cues. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 241–248 (2013)

    Google Scholar 

  6. Chen, Y., Liu, D., Liang, J.: A new method for RGB to CIELAB color space transformation based on Markov chain monte Carlo. In: MIPPR 2013: Parallel Processing of Images and Optimization and Medical Imaging Processing, vol. 8920, pp. 102–108. SPIE (2013)

    Google Scholar 

  7. Chu, S.J., Trushkowsky, R.D., Paravina, R.D.: Dental color matching instruments and systems. Review of clinical and research aspects. J. Dentistry 38, e2–e16 (2010)

    Google Scholar 

  8. Fan, Q., Yang, J., Hua, G., Chen, B., Wipf, D.: Revisiting deep intrinsic image decompositions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8944–8952 (2018)

    Google Scholar 

  9. Fdhal, N., Kyan, M., Androutsos, D., Sharma, A.: Color space transformation from RGB to CIELAB using neural networks. In: Muneesawang, P., Wu, F., Kumazawa, I., Roeksabutr, A., Liao, M., Tang, X. (eds.) PCM 2009. LNCS, vol. 5879, pp. 1011–1017. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10467-1_97

    Chapter  Google Scholar 

  10. Finlayson, G., Hordley, S., Schaefer, G., Tian, G.Y.: Illuminant and device invariant colour using histogram equalisation. Pattern Recogn. 38(2), 179–190 (2005)

    Article  Google Scholar 

  11. Forsyth, D., Rock, J.J.: Intrinsic image decomposition using paradigms. IEEE Trans. Pattern Anal. Mach. Intell. 44(11), 7624–7637 (2021)

    Article  Google Scholar 

  12. Giuseppe, F., Dario, A., Anna, G., Filippo, S.: CIELab color measurement through RGB-D images. In: Rousseau, J.J., Kapralos, B. (eds.) Pattern Recognition, Computer Vision, and Image Processing. Lecture Notes in Computer Science, vol. 13645, pp. 15–20. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-37731-0_2

    Chapter  Google Scholar 

  13. Giuseppe, F., Gueli, A.M., Stanco, F., Allegra, D.: PixelwiseColourSpecification. https://github.com/giuseppefrn/PixelwiseColourSpecification/

  14. Gong, D., et al.: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1705–1714 (2019)

    Google Scholar 

  15. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  16. Gueli, A.M., Pedullà, E., Pasquale, S., La Rosa, G.R., Rapisarda, E.: Color specification of two new resin composites and influence of stratification on their chromatic perception. Color. Res. Appl. 42(5), 684–692 (2017)

    Article  Google Scholar 

  17. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  18. Iturbe, A., Cachero, R., Canal, D., Martos, A.: Virtual digitization of caves with parietal paleolithic art from Bizkaia. Scientific analysis and dissemination through new visualization techniques. Virtual Archaeol. Rev. 9(18), 57–65 (2018)

    Google Scholar 

  19. Karsch, K., Hedau, V., Forsyth, D., Hoiem, D.: Rendering synthetic objects into legacy photographs. ACM Trans. Graph. (TOG) 30(6), 1–12 (2011)

    Article  Google Scholar 

  20. Kawanabe, T., et al.: Quantification of tongue Colour using machine learning in Kampo medicine. Eur. J. Integr. Med. 8(6), 932–941 (2016)

    Article  Google Scholar 

  21. Korytkowski, P., Olejnik-Krugly, A.: Precise capture of colors in cultural heritage digitization. Color. Res. Appl. 42(3), 333–336 (2017)

    Article  Google Scholar 

  22. Kovacs, B., Bell, S., Snavely, N., Bala, K.: Shading annotations in the wild. Comput. Vis. Pattern Recogn. (CVPR) (2017)

    Google Scholar 

  23. Labrecque, L.I., Milne, G.R.: Exciting red and competent blue: the importance of color in marketing. J. Acad. Mark. Sci. 40(5), 711–727 (2012)

    Article  Google Scholar 

  24. Leon, K., Mery, D., Pedreschi, F., Leon, J.: Color measurement in lab units from RGB digital images. Food Res. Int. 39(10), 1084–1091 (2006)

    Article  Google Scholar 

  25. MacDonald, L.: Color space transformation using neural networks. In: Color and Imaging Conference, vol. 2019, pp. 153–158. Society for Imaging Science and Technology (2019)

    Google Scholar 

  26. Milotta, F.L.M., et al.: Challenges in automatic Munsell color profiling for cultural heritage. Pattern Recogn. Lett. 131, 135–141 (2020)

    Article  Google Scholar 

  27. Murmann, L., Gharbi, M., Aittala, M., Durand, F.: A multi-illumination dataset of indoor object appearance. In: 2019 IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  28. Odena, A., Dumoulin, V., Olah, C.: Deconvolution and checkerboard artifacts. Distill (2016). https://doi.org/10.23915/distill.00003, http://distill.pub/2016/deconv-checkerboard

  29. Ruiz, J.F., Pereira, J.: The colours of rock art. Analysis of colour recording and communication systems in rock art research. J. Archaeol. Sci. 50, 338–349 (2014)

    Google Scholar 

  30. Singh, S.: Impact of color on marketing. Manage. Decis. 44(6), 783–789 (2006)

    Article  Google Scholar 

  31. Sønderby, C.K., Caballero, J., Theis, L., Shi, W., Huszár, F.: Amortised map inference for image super-resolution. arXiv preprint: arXiv:1610.04490 (2016)

  32. Stanco, F., Battiato, S., Gallo, G.: Digital Imaging for Cultural Heritage Preservation. Analysis, Restoration, and Reconstruction of Ancient Artworks (2011)

    Google Scholar 

  33. Theis, L., Shi, W., Cunningham, A., Huszár, F.: Lossy image compression with compressive autoencoders. arXiv preprint: arXiv:1703.00395 (2017)

  34. Velastegui, R., Pedersen, M.: CMYK-CIELAB color space transformation using machine learning techniques. In: London Imaging Meeting, vol. 2021, pp. 73–77. Society for Imaging Science and Technology (2021)

    Google Scholar 

Download references

Acknowledgement

The research activity was funded by the University of Catania (Italy) through the PIAno di inCEntivi per la RIcerca di Ateneo (PIACERI) linea 2 project CLEAR - CoLor rEndering Accuracy in cultuRal heritage.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Furnari Giuseppe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Giuseppe, F., Gueli, A.M., Filippo, S., Allegra, D. (2024). Convolutional Generative Model for Pixel–Wise Colour Specification for Cultural Heritage. In: Foresti, G.L., Fusiello, A., Hancock, E. (eds) Image Analysis and Processing - ICIAP 2023 Workshops. ICIAP 2023. Lecture Notes in Computer Science, vol 14366. Springer, Cham. https://doi.org/10.1007/978-3-031-51026-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51026-7_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51025-0

  • Online ISBN: 978-3-031-51026-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics