[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Feature Relevance in Classification of 3D Stone from Ancient Wall Structures

  • Conference paper
  • First Online:
Image Analysis and Processing - ICIAP 2023 Workshops (ICIAP 2023)

Abstract

The increasing availability of quantitative data in archaeological studies has prompted the research of Machine Learning methods to support archaeologists in their analysis. This paper considers in particular the problem of automatic classification of 3D surface patches of “rubble stones” and “wedges” obtained from Prehistorical and Protohistorical walls in Crete. These data come from the W.A.L.(L) Project aimed to query 3D photogrammetric models of ancient architectonical structures in order to extract archaeologically significant features. The principal aim of this paper is to address the issue of a clear semantically correspondence between data analysis concepts and archaeology. Classification of stone patches has been performed with several Machine Learning methods, and then feature relevance has been computed for all the classifiers. The results show a good correspondence between the most relevant features of the classification and the qualitative features that human experts adopt typically to classify the wall facing stones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Angelidakis, V., Nadimi, S., Utili, S.: Elongation, flatness and compactness indices to characterise particle form. Powder Technol. 396, 689–695 (2022). https://doi.org/10.1016/j.powtec.2021.11.027

    Article  Google Scholar 

  2. Borrelli, V., Cazals, F., Morvan, J.M.: On the angular defect of triangulations and the pointwise approximation of curvatures. Comput. Aided Geom. Des. 6(20), 319–341 (2003). https://doi.org/10.1016/S0167-8396(03)00077-3

  3. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.1023/A:101093340432

    Article  Google Scholar 

  4. Breiman, L.: Classification And Regression Trees, 1st edn. Routledge, New York (1984)

    Google Scholar 

  5. Caravale, A., Moscati, P.: La Bibliografia di Informatica Archeologica nella Cultura Digitale Degli Anni Novanta (30 anni di informatica archeologica - 1). All’Insegna del Giglio, Firenze (2021)

    Google Scholar 

  6. Carvalho, L.E., von Wangenheim, A.: 3D object recognition and classification: a systematic literature review. Pattern Anal. Appl. 22, 1243–1292 (2019). https://doi.org/10.1007/s10044-019-00804-4

    Article  MathSciNet  Google Scholar 

  7. Dangeti, P.: Statistics for Machine Learning, 3rd edn. Packt Publishing Ltd., Birmingham (2017)

    Google Scholar 

  8. Gallo, G., Buscemi, F., Ferro, M., Figuera, M., Marco Riela, P.: Abstracting stone walls for visualization and analysis. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021, LNCS, vol. 12667, pp. 215–222. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68787-8_15

  9. Grosman, L.: Reaching the point of no return: the computational revolution in archaeology. Annu. Rev. Anthropol. 1(45), 129–145 (2016). https://doi.org/10.1146/annurev-anthro-102215-095946

    Article  Google Scholar 

  10. Iovita, R.: Shape variation in Aterian tanged tools and the origins of projectile technology: a morphometric perspective on stone tool function. PLoS ONE 12(6), 1–14 (2011). https://doi.org/10.1371/journal.pone.0029029

    Article  Google Scholar 

  11. Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In: 31st Conference on Neural Information Processing Systems (NIPS), Long Beach, CA, USA (2017)

    Google Scholar 

  12. Kong, D., Fonseca, J.: Quantification of the morphology of shelly carbonate sands using 3D images. Géotechnique 68, 249–261 (2018). https://doi.org/10.1680/jgeot.16.P.278

    Article  Google Scholar 

  13. Lundberg, S.M., Lee, Su-In.: A Unified Approach to Interpreting Model Predictions. In: Advances in Neural Information Processing Systems, Curran Associates Inc, vol. 30, pp. 1–10 (2017)

    Google Scholar 

  14. Mari, J.L., Hétroy-Wheeler, F., Subsol, G.: Geometric and Topological Mesh Feature Extraction for 3D Shape Analysis. Wiley-ISTE (2019)

    Google Scholar 

  15. Molnar, C.: Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. Addison Wesley Longman Publishing Co., Inc., Boston (2020)

    Google Scholar 

  16. Moscati, P.: 30 Anni Di Archeologica e Calcolatori. Tra Memoria e Progettualita. All’Insegna del Giglio. CNR - Istituto di Scienze del Patrimonio Culturale, Firenze, Italy (2019)

    Google Scholar 

  17. Suthaharan, S.: Decision tree learning. In: Machine Learning Models and Algorithms for Big Data Classification. Integrated Series in Information Systems, vol. 36, Springer, Boston, MA. (2016). https://doi.org/10.1007/978-1-4899-7641-3-10

  18. Tianqi, C., Carlos, G.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016). https://doi.org/10.1145/2939672.2939785

  19. W.A.L. (L), Wall-facing Automatic images identification Laboratory. A quantitative analysis method for the study of ancient architecture, International Archaeological Joint Laboratories, Financed by the National Research Council(CNR), P.I. Francesca Buscemi, (2020–2021)

    Google Scholar 

  20. Wang, H., Zhang, J.: A survey of deep learning-based mesh processing. Commun. Math. Stat. 10, 163–194 (2022). https://doi.org/10.1007/s40304-021-00246-7

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Gallo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gallo, G., Atani, Y.G., Leotta, R., Stanco, F., Buscemi, F., Figuera, M. (2024). Feature Relevance in Classification of 3D Stone from Ancient Wall Structures. In: Foresti, G.L., Fusiello, A., Hancock, E. (eds) Image Analysis and Processing - ICIAP 2023 Workshops. ICIAP 2023. Lecture Notes in Computer Science, vol 14366. Springer, Cham. https://doi.org/10.1007/978-3-031-51026-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51026-7_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51025-0

  • Online ISBN: 978-3-031-51026-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics