Abstract
The increasing availability of quantitative data in archaeological studies has prompted the research of Machine Learning methods to support archaeologists in their analysis. This paper considers in particular the problem of automatic classification of 3D surface patches of “rubble stones” and “wedges” obtained from Prehistorical and Protohistorical walls in Crete. These data come from the W.A.L.(L) Project aimed to query 3D photogrammetric models of ancient architectonical structures in order to extract archaeologically significant features. The principal aim of this paper is to address the issue of a clear semantically correspondence between data analysis concepts and archaeology. Classification of stone patches has been performed with several Machine Learning methods, and then feature relevance has been computed for all the classifiers. The results show a good correspondence between the most relevant features of the classification and the qualitative features that human experts adopt typically to classify the wall facing stones.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Angelidakis, V., Nadimi, S., Utili, S.: Elongation, flatness and compactness indices to characterise particle form. Powder Technol. 396, 689–695 (2022). https://doi.org/10.1016/j.powtec.2021.11.027
Borrelli, V., Cazals, F., Morvan, J.M.: On the angular defect of triangulations and the pointwise approximation of curvatures. Comput. Aided Geom. Des. 6(20), 319–341 (2003). https://doi.org/10.1016/S0167-8396(03)00077-3
Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.1023/A:101093340432
Breiman, L.: Classification And Regression Trees, 1st edn. Routledge, New York (1984)
Caravale, A., Moscati, P.: La Bibliografia di Informatica Archeologica nella Cultura Digitale Degli Anni Novanta (30 anni di informatica archeologica - 1). All’Insegna del Giglio, Firenze (2021)
Carvalho, L.E., von Wangenheim, A.: 3D object recognition and classification: a systematic literature review. Pattern Anal. Appl. 22, 1243–1292 (2019). https://doi.org/10.1007/s10044-019-00804-4
Dangeti, P.: Statistics for Machine Learning, 3rd edn. Packt Publishing Ltd., Birmingham (2017)
Gallo, G., Buscemi, F., Ferro, M., Figuera, M., Marco Riela, P.: Abstracting stone walls for visualization and analysis. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021, LNCS, vol. 12667, pp. 215–222. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68787-8_15
Grosman, L.: Reaching the point of no return: the computational revolution in archaeology. Annu. Rev. Anthropol. 1(45), 129–145 (2016). https://doi.org/10.1146/annurev-anthro-102215-095946
Iovita, R.: Shape variation in Aterian tanged tools and the origins of projectile technology: a morphometric perspective on stone tool function. PLoS ONE 12(6), 1–14 (2011). https://doi.org/10.1371/journal.pone.0029029
Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In: 31st Conference on Neural Information Processing Systems (NIPS), Long Beach, CA, USA (2017)
Kong, D., Fonseca, J.: Quantification of the morphology of shelly carbonate sands using 3D images. Géotechnique 68, 249–261 (2018). https://doi.org/10.1680/jgeot.16.P.278
Lundberg, S.M., Lee, Su-In.: A Unified Approach to Interpreting Model Predictions. In: Advances in Neural Information Processing Systems, Curran Associates Inc, vol. 30, pp. 1–10 (2017)
Mari, J.L., Hétroy-Wheeler, F., Subsol, G.: Geometric and Topological Mesh Feature Extraction for 3D Shape Analysis. Wiley-ISTE (2019)
Molnar, C.: Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. Addison Wesley Longman Publishing Co., Inc., Boston (2020)
Moscati, P.: 30 Anni Di Archeologica e Calcolatori. Tra Memoria e Progettualita. All’Insegna del Giglio. CNR - Istituto di Scienze del Patrimonio Culturale, Firenze, Italy (2019)
Suthaharan, S.: Decision tree learning. In: Machine Learning Models and Algorithms for Big Data Classification. Integrated Series in Information Systems, vol. 36, Springer, Boston, MA. (2016). https://doi.org/10.1007/978-1-4899-7641-3-10
Tianqi, C., Carlos, G.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016). https://doi.org/10.1145/2939672.2939785
W.A.L. (L), Wall-facing Automatic images identification Laboratory. A quantitative analysis method for the study of ancient architecture, International Archaeological Joint Laboratories, Financed by the National Research Council(CNR), P.I. Francesca Buscemi, (2020–2021)
Wang, H., Zhang, J.: A survey of deep learning-based mesh processing. Commun. Math. Stat. 10, 163–194 (2022). https://doi.org/10.1007/s40304-021-00246-7
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gallo, G., Atani, Y.G., Leotta, R., Stanco, F., Buscemi, F., Figuera, M. (2024). Feature Relevance in Classification of 3D Stone from Ancient Wall Structures. In: Foresti, G.L., Fusiello, A., Hancock, E. (eds) Image Analysis and Processing - ICIAP 2023 Workshops. ICIAP 2023. Lecture Notes in Computer Science, vol 14366. Springer, Cham. https://doi.org/10.1007/978-3-031-51026-7_32
Download citation
DOI: https://doi.org/10.1007/978-3-031-51026-7_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-51025-0
Online ISBN: 978-3-031-51026-7
eBook Packages: Computer ScienceComputer Science (R0)