[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Large Language Models Can Accomplish Business Process Management Tasks

  • Conference paper
  • First Online:
Business Process Management Workshops (BPM 2023)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 492))

Included in the following conference series:

Abstract

Business Process Management (BPM) aims to improve organizational activities and their outcomes by managing the underlying processes. To achieve this, it is often necessary to consider information from various sources, including unstructured textual documents. Therefore, researchers have developed several BPM-specific solutions that extract information from textual documents using Natural Language Processing techniques. These solutions are specific to their respective tasks and cannot accomplish multiple process-related problems as a general-purpose instrument. However, in light of the recent emergence of Large Language Models (LLMs) with remarkable reasoning capabilities, such a general-purpose instrument with multiple applications now appears attainable. In this paper, we illustrate how LLMs can accomplish text-related BPM tasks by applying a specific LLM to three exemplary tasks: mining imperative process models from textual descriptions, mining declarative process models from textual descriptions, and assessing the suitability of process tasks from textual descriptions for robotic process automation. We show that, without extensive configuration or prompt engineering, LLMs perform comparably to or better than existing solutions and discuss implications for future BPM research as well as practical usage.

M. Grohs, L. Abb, N. Elsayed—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://gitlab.uni-mannheim.de/jpmac/llms-in-bpm.

  2. 2.

    The corresponding confusion matrices can be found in our repository.

References

  1. Bellan, P., van der Aa, H., Dragoni, M., Ghidini, C., Ponzetto, S.P.: PET: an annotated dataset for process extraction from natural language text tasks. In: Cabanillas, C., Garmann-Johnsen, N.F., Koschmider, A. (eds.) BPM 2022. LNBIP, vol. 460, pp. 315–321. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-25383-6_23

    Chapter  Google Scholar 

  2. Bellan, P., Dragoni, M., Ghidini, C.: A qualitative analysis of the state of the art in process extraction from text. In: DP@AI*IA (2020)

    Google Scholar 

  3. Bellan, P., Dragoni, M., Ghidini, C.: Extracting business process entities and relations from text using pre-trained language models and in-context learning. In: Almeida, J.P.A., Karastoyanova, D., Guizzardi, G., Montali, M., Maggi, F.M., Fonseca, C.M. (eds.) EDOC 2022. LNCS, vol. 13585, pp. 182–199. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17604-3_11

    Chapter  Google Scholar 

  4. Burattin, A., Maggi, F.M., Sperduti, A.: Conformance checking based on multi-perspective declarative process models. Expert Syst. Appl. 65, 194–211 (2016)

    Article  Google Scholar 

  5. Busch, K., Rochlitzer, A., Sola, D., Leopold, H.: Just tell me: prompt engineering in business process management. Preprint arXiv:2304.07183 (2023)

  6. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Introduction to business process management. In: Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A. (eds.) Fundamentals of Business Process Management, pp. 1–33. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-56509-4_1

    Chapter  Google Scholar 

  7. Friedrich, F.: Automated generation of business process models from natural language input. Master thesis. https://frapu.de/pdf/friedrich2010.pdf

  8. Friedrich, F., Mendling, J., Puhlmann, F.: Process model generation from natural language text. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 482–496. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21640-4_36

    Chapter  Google Scholar 

  9. Klievtsova, N., Benzin, J.V., Kampik, T., Mangler, J., Rinderle-Ma, S.: Conversational process modelling: state of the art, applications, and implications in practice. Preprint arXiv:2304.11065 (2023)

  10. Leopold, H., van der Aa, H., Reijers, H.A.: Identifying candidate tasks for robotic process automation in textual process descriptions. In: Gulden, J., Reinhartz-Berger, I., Schmidt, R., Guerreiro, S., Guédria, W., Bera, P. (eds.) BPMDS/EMMSAD -2018. LNBIP, vol. 318, pp. 67–81. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91704-7_5

    Chapter  Google Scholar 

  11. Mustansir, A., Shahzad, K., Malik, M.K.: Towards automatic business process redesign: an NLP based approach to extract redesign suggestions. Autom. Softw. Eng. 29, 1–24 (2022)

    Article  Google Scholar 

  12. OpenAI: GPT-4 technical report. Preprint arXiv:2304.04309 (2023)

  13. Rebmann, A., van der Aa, H.: Extracting semantic process information from the natural language in event logs. In: La Rosa, M., Sadiq, S., Teniente, E. (eds.) CAiSE 2021. LNCS, vol. 12751, pp. 57–74. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79382-1_4

    Chapter  Google Scholar 

  14. Reddy, K.N., Harichandana, U., Alekhya, T., Rajesh, S.: A study of robotic process automation among artificial intelligence. Int. J. Sci. Res. 9(2), 392–397 (2019)

    Google Scholar 

  15. Reijers, H.A., Limam, S., van der Aalst, W.: Product-based workflow design. JMIS 20(1), 229–262 (2003)

    Google Scholar 

  16. Rizun, N., Revina, A., Meister, V.G.: Assessing business process complexity based on textual data: evidence from ITIL IT ticket processing. BPMJ 27(7), 1966–1998 (2021)

    Article  Google Scholar 

  17. Teubner, T., Flath, C.M., Weinhardt, C., van der Aalst, W., Hinz, O.: Welcome to the era of ChatGPT et al. the prospects of large language models. BISE 65, 95–101 (2023). https://doi.org/10.1007/s12599-023-00795-x

    Article  Google Scholar 

  18. van der Aa, H., Carmona, J., Leopold, H., Mendling, J., Padró, L.: Challenges and opportunities of applying natural language processing in business process management. In: COLING, pp. 2791–2801 (2018)

    Google Scholar 

  19. van der Aa, H., Di Ciccio, C., Leopold, H., Reijers, H.A.: Extracting declarative process models from natural language. In: Giorgini, P., Weber, B. (eds.) CAiSE 2019. LNCS, vol. 11483, pp. 365–382. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21290-2_23

    Chapter  Google Scholar 

  20. Vidgof, M., Bachhofner, S., Mendling, J.: Large language models for business process management: opportunities and challenges. Preprint arXiv:2304.04309 (2023)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Grohs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grohs, M., Abb, L., Elsayed, N., Rehse, JR. (2024). Large Language Models Can Accomplish Business Process Management Tasks. In: De Weerdt, J., Pufahl, L. (eds) Business Process Management Workshops. BPM 2023. Lecture Notes in Business Information Processing, vol 492. Springer, Cham. https://doi.org/10.1007/978-3-031-50974-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50974-2_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50973-5

  • Online ISBN: 978-3-031-50974-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics