Abstract
Business Process Management (BPM) aims to improve organizational activities and their outcomes by managing the underlying processes. To achieve this, it is often necessary to consider information from various sources, including unstructured textual documents. Therefore, researchers have developed several BPM-specific solutions that extract information from textual documents using Natural Language Processing techniques. These solutions are specific to their respective tasks and cannot accomplish multiple process-related problems as a general-purpose instrument. However, in light of the recent emergence of Large Language Models (LLMs) with remarkable reasoning capabilities, such a general-purpose instrument with multiple applications now appears attainable. In this paper, we illustrate how LLMs can accomplish text-related BPM tasks by applying a specific LLM to three exemplary tasks: mining imperative process models from textual descriptions, mining declarative process models from textual descriptions, and assessing the suitability of process tasks from textual descriptions for robotic process automation. We show that, without extensive configuration or prompt engineering, LLMs perform comparably to or better than existing solutions and discuss implications for future BPM research as well as practical usage.
M. Grohs, L. Abb, N. Elsayed—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
The corresponding confusion matrices can be found in our repository.
References
Bellan, P., van der Aa, H., Dragoni, M., Ghidini, C., Ponzetto, S.P.: PET: an annotated dataset for process extraction from natural language text tasks. In: Cabanillas, C., Garmann-Johnsen, N.F., Koschmider, A. (eds.) BPM 2022. LNBIP, vol. 460, pp. 315–321. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-25383-6_23
Bellan, P., Dragoni, M., Ghidini, C.: A qualitative analysis of the state of the art in process extraction from text. In: DP@AI*IA (2020)
Bellan, P., Dragoni, M., Ghidini, C.: Extracting business process entities and relations from text using pre-trained language models and in-context learning. In: Almeida, J.P.A., Karastoyanova, D., Guizzardi, G., Montali, M., Maggi, F.M., Fonseca, C.M. (eds.) EDOC 2022. LNCS, vol. 13585, pp. 182–199. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17604-3_11
Burattin, A., Maggi, F.M., Sperduti, A.: Conformance checking based on multi-perspective declarative process models. Expert Syst. Appl. 65, 194–211 (2016)
Busch, K., Rochlitzer, A., Sola, D., Leopold, H.: Just tell me: prompt engineering in business process management. Preprint arXiv:2304.07183 (2023)
Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Introduction to business process management. In: Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A. (eds.) Fundamentals of Business Process Management, pp. 1–33. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-56509-4_1
Friedrich, F.: Automated generation of business process models from natural language input. Master thesis. https://frapu.de/pdf/friedrich2010.pdf
Friedrich, F., Mendling, J., Puhlmann, F.: Process model generation from natural language text. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 482–496. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21640-4_36
Klievtsova, N., Benzin, J.V., Kampik, T., Mangler, J., Rinderle-Ma, S.: Conversational process modelling: state of the art, applications, and implications in practice. Preprint arXiv:2304.11065 (2023)
Leopold, H., van der Aa, H., Reijers, H.A.: Identifying candidate tasks for robotic process automation in textual process descriptions. In: Gulden, J., Reinhartz-Berger, I., Schmidt, R., Guerreiro, S., Guédria, W., Bera, P. (eds.) BPMDS/EMMSAD -2018. LNBIP, vol. 318, pp. 67–81. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91704-7_5
Mustansir, A., Shahzad, K., Malik, M.K.: Towards automatic business process redesign: an NLP based approach to extract redesign suggestions. Autom. Softw. Eng. 29, 1–24 (2022)
OpenAI: GPT-4 technical report. Preprint arXiv:2304.04309 (2023)
Rebmann, A., van der Aa, H.: Extracting semantic process information from the natural language in event logs. In: La Rosa, M., Sadiq, S., Teniente, E. (eds.) CAiSE 2021. LNCS, vol. 12751, pp. 57–74. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79382-1_4
Reddy, K.N., Harichandana, U., Alekhya, T., Rajesh, S.: A study of robotic process automation among artificial intelligence. Int. J. Sci. Res. 9(2), 392–397 (2019)
Reijers, H.A., Limam, S., van der Aalst, W.: Product-based workflow design. JMIS 20(1), 229–262 (2003)
Rizun, N., Revina, A., Meister, V.G.: Assessing business process complexity based on textual data: evidence from ITIL IT ticket processing. BPMJ 27(7), 1966–1998 (2021)
Teubner, T., Flath, C.M., Weinhardt, C., van der Aalst, W., Hinz, O.: Welcome to the era of ChatGPT et al. the prospects of large language models. BISE 65, 95–101 (2023). https://doi.org/10.1007/s12599-023-00795-x
van der Aa, H., Carmona, J., Leopold, H., Mendling, J., Padró, L.: Challenges and opportunities of applying natural language processing in business process management. In: COLING, pp. 2791–2801 (2018)
van der Aa, H., Di Ciccio, C., Leopold, H., Reijers, H.A.: Extracting declarative process models from natural language. In: Giorgini, P., Weber, B. (eds.) CAiSE 2019. LNCS, vol. 11483, pp. 365–382. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21290-2_23
Vidgof, M., Bachhofner, S., Mendling, J.: Large language models for business process management: opportunities and challenges. Preprint arXiv:2304.04309 (2023)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Grohs, M., Abb, L., Elsayed, N., Rehse, JR. (2024). Large Language Models Can Accomplish Business Process Management Tasks. In: De Weerdt, J., Pufahl, L. (eds) Business Process Management Workshops. BPM 2023. Lecture Notes in Business Information Processing, vol 492. Springer, Cham. https://doi.org/10.1007/978-3-031-50974-2_34
Download citation
DOI: https://doi.org/10.1007/978-3-031-50974-2_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-50973-5
Online ISBN: 978-3-031-50974-2
eBook Packages: Computer ScienceComputer Science (R0)