[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Discussion on Generalization in Next-Activity Prediction

  • Conference paper
  • First Online:
Business Process Management Workshops (BPM 2023)

Abstract

Next activity prediction aims to forecast the future behavior of running process instances. Recent publications in this field predominantly employ deep learning techniques and evaluate their prediction performance using publicly available event logs. This paper presents empirical evidence that calls into question the effectiveness of these current evaluation approaches. We show that there is an enormous amount of example leakage in all of the commonly used event logs, so that rather trivial prediction approaches perform almost as well as ones that leverage deep learning. We further argue that designing robust evaluations requires a more profound conceptual engagement with the topic of next-activity prediction, and specifically with the notion of generalization to new data. To this end, we present various prediction scenarios that necessitate different types of generalization to guide future research.

L. Abb and P. Pfeiffer—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://gitlab.uni-mannheim.de/jpmac/ppm-generalization.

  2. 2.

    A notable exception to this is [8], which focuses on process model structures.

References

  1. Breuker, D., Matzner, M., Delfmann, P., Becker, J.: Comprehensible predictive models for business processes. MIS Q. 40(4), 1009–1034 (2016)

    Article  Google Scholar 

  2. Brunk, J., Stottmeister, J., Weinzierl, S., Matzner, M., Becker, J.: Exploring the effect of context information on deep learning business process predictions. J. Decis. Syst. 29(sup1), 328–343 (2020)

    Article  Google Scholar 

  3. Di Francescomarino, C., Ghidini, C.: Predictive process monitoring. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining Handbook. Lecture Notes in Business Information Processing, vol. 448, pp. 320–346. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08848-3_10

    Chapter  Google Scholar 

  4. Evermann, J., Rehse, J.R., Fettke, P.: Predicting process behaviour using deep learning. Decis. Support Syst. 100, 129–140 (2017)

    Article  Google Scholar 

  5. Kaufman, S., Rosset, S., Perlich, C.: Leakage in data mining: formulation, detection, and avoidance. In: KDD Conference, vol. 6, pp. 556–563. ACM, New YOrk (2011)

    Google Scholar 

  6. Neu, D., Lahann, J., Fettke, P.: A systematic literature review on state-of-the-art deep learning methods for process prediction. Art. Int. Rev. 55, 1–27 (2022)

    Google Scholar 

  7. Pasquadibisceglie, V., Appice, A., Castellano, G., Malerba, D.: A multi-view deep learning approach for predictive business process monitoring. IEEE Trans. Serv. Comp. 15(04), 2382–2395 (2022)

    Article  Google Scholar 

  8. Peeperkorn, J., Broucke, S.V., De Weerdt, J.: Can recurrent neural networks learn process model structure? J. Intell. Inf. Syst. 61, 1–25 (2022)

    Google Scholar 

  9. Pfeiffer, P., Lahann, J., Fettke, P.: Multivariate business process representation learning utilizing Gramian angular fields and convolutional neural networks. In: Polyvyanyy, A., Wynn, M.T., Van Looy, A., Reichert, M. (eds.) BPM 2021. LNCS, vol. 12875, pp. 327–344. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85469-0_21

    Chapter  Google Scholar 

  10. Pfeiffer, P., Lahann, J., Fettke, P.: The label ambiguity problem in process prediction. In: Cabanillas, C., Garmann-Johnsen, N.F., Koschmider, A. (eds.) BPM 2022. LNBIP, vol. 460, pp. 37–44. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-25383-6_4

    Chapter  Google Scholar 

  11. Rama-Maneiro, E., Vidal, J., Lama, M.: Deep learning for predictive business process monitoring: review and benchmark. IEEE Trans. Serv. Comp. 16(1) (2021)

    Google Scholar 

  12. Scheid, M., Rehse, J.R., Houy, C., Fettke, P.: Data set for MobIS challenge 2019 (2018). https://doi.org/10.13140/RG.2.2.11870.28487

  13. Tax, N., Teinemaa, I., van Zelst, S.J.: An interdisciplinary comparison of sequence modeling methods for next-element prediction. Softw. Syst. Model. 19(6), 1345–1365 (2020)

    Article  Google Scholar 

  14. Verenich, I.: Helpdesk event log. https://doi.org/10.17632/39bp3vv62t.1

  15. Weytjens, H., De Weerdt, J.: Creating unbiased public benchmark datasets with data leakage prevention for predictive process monitoring. In: Marrella, A., Weber, B. (eds.) BPM 2021. LNBIP, vol. 436, pp. 18–29. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-94343-1_2

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luka Abb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abb, L., Pfeiffer, P., Fettke, P., Rehse, JR. (2024). A Discussion on Generalization in Next-Activity Prediction. In: De Weerdt, J., Pufahl, L. (eds) Business Process Management Workshops. BPM 2023. Lecture Notes in Business Information Processing, vol 492. Springer, Cham. https://doi.org/10.1007/978-3-031-50974-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50974-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50973-5

  • Online ISBN: 978-3-031-50974-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics