Abstract
Recommender Systems (RS) are computer-based tools that use Artificial Intelligence (AI) algorithms to make product or service recommendations to users. A recommendation algorithm is usually applied to predict users’ tastes and preferences based on their behavioral characteristics. RS has gained the attention of e-retailers and managers connected to e-business. This research aims to provide a holistic and deep understanding of RS concerning its current progress and future scope. Hence, the goal of the study is to review the various trends and developments that have taken place in the field of RS in the last decade. Also, it outlines the key future scope and its application in various domains. For this purpose, a comprehensive and systematic literature review has been conducted using recently developed Scientific Procedures and Rationales for Systematic Literature Reviews (SPAR-4-SLR). A total of 60 journal articles and conference proceedings published from 2010 to 2022 under top publishers have been selected. The extant literature has been scrutinized and research gaps have been identified. Furthermore, this paper also envisions the future of RS, which may broaden the horizon for new research directions in this field.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdul Hussien, F.T., Rahma, A.M.S., Abdul Wahab, H.B.: Recommendation systems for E-commerce systems an overview. J. Phys. Conf. Ser. 1897(1) (2021). https://doi.org/10.1088/1742-6596/1897/1/012024
Abdullah, N., et al.: Infrequent purchased product recommendation making based on user behaviour and opinions in E-commerce sites. In: 2010 IEEE International Conference on Data Mining Workshops, Sydney, NSW, Australia, pp. 1084–1091. IEEE (2010). https://doi.org/10.1109/ICDMW.2010.116
Adomavicius, G., et al.: Do recommender systems manipulate consumer preferences ? A study of anchoring effects. Inf. Syst. Res. 24, 956–975 (2013). https://doi.org/10.1287/isre.2013.0497
Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible. IEEE Trans. Knowl. Data Eng. 17(6), 377 (2005). https://doi.org/10.1109/TKDE.2005.99
Alamdari, P.M., et al.: A systematic study on the recommender systems in the E-commerce. IEEE Access 8, 115694–115716 (2020). https://doi.org/10.1109/ACCESS.2020.3002803
Alyari, F., Jafari Navimipour, N.: Recommender systems: a systematic review of the state of the art literature and suggestions for future research. Kybernetes 47(5), 985–1017 (2018). https://doi.org/10.1108/K-06-2017-0196
Badriyah, T., et al.: A hybrid recommendation system for E-commerce based on product description and user profile. In: 7th International Conference on Innovative Computing Technology, INTECH 2017, pp. 95–100 (2017). https://doi.org/10.1109/INTECH.2017.8102435
Baum, D., Spann, M.: The interplay between online consumer reviews and recommender systems: an experimental analysis. Int. J. Electron. Commer., 129–162 (2014). https://doi.org/10.2753/JEC1086-4415190104
Beel, J., et al.: Research-paper recommender systems: a literature survey. Int. J. Digit. Libr. 17(4), 305–338 (2016). https://doi.org/10.1007/s00799-015-0156-0
Beladev, M., Rokach, L., Shapira, B.: Recommender systems for product bundling. Knowl.-Based Syst. 111, 193–206 (2016). https://doi.org/10.1016/j.knosys.2016.08.013
Cena, F., et al.: How scales influence user rating behaviour in recommender systems. Behav. Inf. Technol. 36(10), 985–1004 (2017). https://doi.org/10.1080/0144929X.2017.1322145
Cha, N., et al.: Effect of AI recommendation system on the consumer preference structure in e-commerce: based on two types of preference. In: International Conference on Advanced Communication Technology, ICAC, PyeongChang, South Korea, pp. 77–80. Global IT Research Institute (GIRI) (2019). https://doi.org/10.23919/ICACT.2019.8701967
Chadha, A., Kaur, P.: Comparative analysis of recommendation system. In: 2015 4th International Symposium on Emerging Trends and Technologies in Libraries and Information Services, ETTLIS 2015 - Proceedings, pp. 313–318 (2015). https://doi.org/10.1109/ETTLIS.2015.7048218
Cheng, Y.S., Hsu, P.Y., Liu, Y.C.: Identifying and recommending user-interested attributes with values. Ind. Manag. Data Syst. 118(4), 765–781 (2018). https://doi.org/10.1108/IMDS-04-2017-0164
Chinchanachokchai, S., Thontirawong, P., Chinchanachokchai, P.: A tale of two recommender systems: the moderating role of consumer expertise on artificial intelligence based product recommendations. J. Retail. Consum. Serv. 61, 102528 (2020). https://doi.org/10.1016/j.jretconser.2021.102528
Choi, J., Lee, H.J., Kim, H.W.: Examining the effects of personalized App recommender systems on purchase intention: a self and social-interaction perspective. J. Electron. Commer. Res. 18(1), 73–102 (2017). https://www.scopus.com/record/display.uri?eid=2-s2.0-85021167503&origin=resultslist&sort=plf-f&src=s&st1=Examining+the+effects+of+personalized+App+recommender+systems+on+purchase+intention%3A+A+self+and+social-interaction+perspective&sid=790a0e9be898604ec
Choi, J., Lee, H.J., Kim, Y.C.: The influence of social presence on customer intention to reuse online recommender systems: the roles of personalization and product type. Int. J. Electron. Commer. 16(1), 129–153 (2011). https://doi.org/10.2753/JEC1086-4415160105
Christensen, I.A., Schiaffino, S.: Social influence in group recommender systems. Online Inf. Rev. 38(4), 524–542 (2014). https://doi.org/10.1108/OIR-08-2013-0187
Christidis, K., Mentzas, G.: A topic-based recommender system for electronic marketplace platforms. Expert Syst. Appl. 40(11), 4370–4379 (2013). https://doi.org/10.1016/j.eswa.2013.01.014
Congying, G., et al.: Apparel recommendation system evolution: an empirical review. Int. J. Cloth. Sci. Technol. 28(6), 854–879 (2016). https://www.emerald.com/insight/content/doi/10.1108/IJCST-09-2015-0100/full/html
Deng, W.: Leveraging consumer behaviors for product recommendation: an approach based on heterogeneous network. Electron. Commer. Res. 22(4), 1079–1105 (2020). https://doi.org/10.1007/s10660-020-09441-0
Dessì, D., et al.: A recommender system of medical reports leveraging cognitive computing and frame semantics. Intell. Syst. Ref. Libr. (2019). https://doi.org/10.1007/978-3-319-94030-4_2
Gao, T., et al.: Deep learning with consumer preferences for recommender system. In: 2016 IEEE International Conference on Information and Automation, IEEE ICIA 2016, pp. 1556–1561 (2017). https://doi.org/10.1109/ICInfA.2016.7832066
He, M., Ren, C., Zhang, H.: Intent-based recommendation for B2C e-commerce platforms. IBM J. Res. Dev. 58(5/6), 5:1–5:10 (2014). https://doi.org/10.1147/jrd.2014.2338091
Heimbach, I., Gottschlich, J., Hinz, O.: The value of user ’ s Facebook profile data for product recommendation generation. Electron Markets 25, 125–138 (2015). https://doi.org/10.1007/s12525-015-0187-9
Huang, Y., et al.: Lifestyles in Amazon: evidence from online reviews enhanced recommender system. Int. J. Mark. Res. 62(6), 689–706 (2020). https://doi.org/10.1177/1470785319844146
Hwangbo, H., Kim, Y.S., Cha, K.J.: Recommendation system development for fashion retail e-commerce. Electron. Commer. Res. Appl. 28, 94–101 (2018). https://doi.org/10.1016/j.elerap.2018.01.012
Jeong, H.J., Lee, M.: Effects of recommendation systems on consumer inferences of website motives and attitudes towards a website. Int. J. Advert. 32(4), 539–558 (2013). https://doi.org/10.2501/ija-32-4-539-558
Jiao, M.H., et al.: Research on personalized recommendation optimization of E-commerce system based on customer trade behaviour data. In: Proceedings of the 28th Chinese Control and Decision Conference, CCDC 2016, Luton, UK, pp. 6506–6511. IEEE (2016). https://doi.org/10.1109/CCDC.2016.7532169
Karlgren, J.: An algebra for Recommendations. The Systems Development and Artificial Intelligence Laboratory [Preprint], (179) (1990)
Khodabandehlou, S., Hashemi Golpayegani, S.A., Zivari Rahman, M.: An effective recommender system based on personality traits, demographics and behavior of customers in time context. Data Technol. Appl. 55(1), 149–174 (2021). https://doi.org/10.1108/DTA-04-2020-0094
Kim, Y.S., et al.: Sequence aware recommenders for fashion E-commerce. Electron. Commer. Res. [Preprint] (2022). https://doi.org/10.1007/s10660-022-09627-8
Köhler, S.: The impact of consumer preferences on the accuracy of collaborative filtering recommender systems. Electron. Mark. 26, 369–379 (2016)
Ku, Y.C., Tai, Y.M.: What happens when recommendation system meets reputation system? The impact of recommendation information on purchase intention. In: Proceedings of the Annual Hawaii International Conference on System Sciences, pp. 1376–1383. IEEE (2013). https://doi.org/10.1109/HICSS.2013.605
Lee, D., Hosanagar, K.: How do product attributes and reviews moderate the impact of recommender systems through purchase stages? Manage. Sci. 67(1), 524–546 (2021). https://doi.org/10.1287/mnsc.2019.3546
Lepkowska-White, E.: Are they listening? Designing online recommendations for today’s consumers. J. Res. Interact. Mark. 7(3), 182–200 (2013). https://doi.org/10.1108/JRIM-07-2012-0027
Li, L., Chen, J., Raghunathan, S.: Recommender system rethink: implications for an electronic marketplace with competing manufacturers. Inf. Syst. Res. 29(4), 1003–1023 (2018). https://doi.org/10.1287/ISRE.2017.0765
Li, Y.H., Fan, Z.P., Qiao, G.H.: Product recommendation incorporating the consideration of product performance and customer service factors. Kybernetes 46(10), 1753–1776 (2017). https://doi.org/10.1108/K-03-2017-0096
Li, Y.M., Wu, C.T., Lai, C.Y.: A social recommender mechanism for e-commerce: combining similarity, trust, and relationship. Decis. Support Syst. 55(3), 740–752 (2013). https://doi.org/10.1016/J.DSS.2013.02.009
Lin, Z.: An empirical investigation of user and system recommendations in E-Commerce. Decis. Support Syst. 68, 111–124 (2014). https://doi.org/10.1016/j.dss.2014.10.003
Lina, X., Abhijit, R., Mihai, N.: A dual process model of the influence of recommender systems on purchase a dual process model of the influence of recommender systems on purchase intentions in online shopping environments. J. Internet Commer. 22(3), 1–22 (2022). https://doi.org/10.1080/15332861.2022.2049113
Ma, Y., Chen, G., Wei, Q.: Finding users preferences from large-scale online reviews for personalized recommendation. Electron. Commer. Res. 17(1), 3–29 (2017). https://doi.org/10.1007/s10660-016-9240-9
Martínez-López, F.J., et al.: Psychological elements explaining the consumer’s adoption and use of a website recommendation system: a theoretical framework proposal. Internet Res. 20(3), 316–341 (2010). https://doi.org/10.1108/10662241011050731
Martínez-López, Francisco J., et al.: Consumers’ psychological outcomes linked to the use of an online store’s recommendation system. Internet Res. 25(4), 562–588 (2015). https://doi.org/10.1108/IntR-01-2014-0033
Martínez-López, F.J., et al.: Psychological factors explaining consumer adoption of an e-vendor’s recommender. Ind. Manag. Data Syst. 115(2), 284–310 (2015). https://doi.org/10.1108/IMDS-10-2014-0306
Moher, D., et al.: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int. J. Surg. 8(5), 336–341 (2009). https://doi.org/10.1016/j.ijsu.2010.02.007
Monti, D., Rizzo, G., Morisio, M.: A systematic literature review of multicriteria recommender systems. Artif. Intell. Rev. 54(1), 427–468 (2021). https://doi.org/10.1007/s10462-020-09851-4
Oumaima, S., Soulaimane, K., Omar, B.: Latest trends in recommender systems applied in the medical domain: a systematic review. In: ACM International Conference Proceeding Series [Preprint] (2020). https://doi.org/10.1145/3386723.3387860
Panniello, U., Hill, S., Gorgoglione, M.: The impact of profit incentives on the relevance of online recommendations. Electron. Commer. Res. Appl. 20, 87–104 (2016). https://doi.org/10.1016/j.elerap.2016.10.003
Patel, S.: Evolution of online shopping in India & its unparallel growth. Int. J. Res. Manag. Pharm. 4(3), 24–33 (2015)
Paul, J., et al.: Scientific procedures and rationales for systematic literature reviews (SPAR-4-SLR). Int. J. Consum. Stud., 1–16 (2021). https://doi.org/10.1111/ijcs.12695
Priya, G.N., Murugan, K., Sharmila, A.: Developing intellectual patterns in online business to customer interaction with dynamic recommender system. In: International Conference on Information Communication and Embedded Systems (ICICES 2014), Chennai, pp. 1–5. IEEE (2015). https://doi.org/10.1109/ICICES.2014.7033851
Pu, P., Chen, L., Hu, R.: A user-centric evaluation framework for recommender systems. J. Petrol. 39, 157–164 (2011). https://doi.org/10.1093/petrology/39.1.61
Rich, E.: User modeling via stereotypes *. Cogn. Sci. 3, 329–354 (1979)
Roudposhti, V.M., et al.: A new model for customer purchase intention in e-commerce recommendation agents. J. Int. Stud. 11(4), 237–253 (2018). https://doi.org/10.14254/2071-8330.2018/11-4/17
Roy, D., Dutta, M.: A systematic review and research perspective on recommender systems. J. Big Data 9(1) (2022). https://doi.org/10.1186/s40537-022-00592-5
Scholz, M., et al.: Measuring consumers’ willingness-to-pay with utility-based recommendation systems. Decis. Support Syst. 72, 60–71 (2015). https://doi.org/10.1016/j.dss.2015.02.006
Shahriari-Mehr, G., et al.: A store location-based recommender system using user’s position and web searches. J. Locat. Based Serv. 15(2), 118–141 (2021). https://doi.org/10.1080/17489725.2021.1880029
Singh, P.K., et al.: Recommender systems: an overview, research trends, and future directions. Int. J. Bus. Syst. Res. 15(1), 14 (2021). https://doi.org/10.1504/ijbsr.2021.10033303
Srivastava, A., Kumar, P., Kumar, B.: New perspectives on gray sheep behavior in E-commerce recommendations. J. Retail. Consum. Serv. 53, 1–11 (2020). https://doi.org/10.1016/j.jretconser.2019.02.018
Virdi, P., Kalro, A.D., Sharma, D.: Consumer acceptance of social recommender systems in India. Online Inf. Rev. 44(3), 723–744 (2020). https://doi.org/10.1108/OIR-05-2018-0177
Wakil, K., et al.: A new model for assessing the role of customer behavior history, product classification, and prices on the success of the recommender systems in e-commerce. Kybernetes 49(5), 1325–1346 (2020). https://doi.org/10.1108/K-03-2019-0199
Wu, L.L., Joung, Y.J., Lee, J.: Recommendation systems and consumer satisfaction online: moderating effects of consumer product awareness. In: Proceedings of the Annual Hawaii International Conference on System Sciences, Wailea, HI, USA, pp. 2753–2762 (2013). https://doi.org/10.1109/HICSS.2013.461
Yadav, R., et al.: A recommendation system for E-commerce base on client profile. In: Proceedings of the 2nd International Conference on Trends in Electronics and Informatics, ICOEI 2018, Tirunelveli, India, pp. 1316–1322. IEEE (2018). https://doi.org/10.1109/ICOEI.2018.8553930
Yan, Q., et al.: Effects of product portfolios and recommendation timing in the efficiency of personalized recommendation. J. Consum. Behav. 15(6), 516–526 (2016). https://doi.org/10.1002/cb.1588
Yang, D.H., Gao, X.: Online retailer recommender systems: a competitive analysis. Int. J. Prod. Res. 55(14), 4089–4109 (2017). https://doi.org/10.1080/00207543.2016.1253888
Yang, X.: Influence of informational factors on purchase intention in social recommender systems. Online Inf. Rev. 44(2), 417–431 (2020). https://doi.org/10.1108/OIR-12-2016-0360
Yin, C., et al.: A new recommendation system on the basis of consumer initiative decision based on an associative classification approach. Ind. Manage. Data Syst. 118(1), 188–203 (2018). https://doi.org/10.1108/IMDS-02-2017-0057
Ying, Z., et al.: Impact of recommender systems on unplanned purchase behaviours in e-commerce. In: 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, pp. 21–30. IEEE (2018). https://doi.org/10.1109/IEA.2018.8387066
Yunhui, H., Jiang, W., Zhijie, L.: Complements are warm and substitutes are competent: the effect of recommendation type on focal product evaluation. Internet Res. 32(4), 1168–1190 (2022). https://doi.org/10.1108/INTR-09-2020-0510
Zhang, M., Bockstedt, J.: Complements and substitutes in online product recommendations: the differential effects on consumers’ willingness to pay. Inf. Manage. 57(6), 103341 (2020). https://doi.org/10.1016/j.im.2020.103341
Zhang, Q., Lu, J., Jin, Y.: Artificial intelligence in recommender systems. Complex Intell. Syst. 7(1), 439–457 (2021). https://doi.org/10.1007/s40747-020-00212-w
Zhao, X., et al.: The marketing effects of recommender systems in a B2C e-commerce context: a review and future directions. In: Proceedings of the International Conference on Electronic Business (ICEB), December 2018, pp. 665–672 (2018)
Zhou, C., et al.: The impact of recommender systems and pricing strategies on brand competition and consumer search. Electron. Commer. Res. Appl. 53, 101–144 (2022). https://doi.org/10.1016/j.elerap.2022.101144
Zhu, X., Huang, J., Shi, M.: An intelligent on-line recommendation system in B2C apparel e-commerce. In: Proceedings of the International Conference on E-Business and E-Government, ICEE 2010, Guangzhou, China, pp. 2213–2216. IEEE (2010). https://doi.org/10.1109/ICEE.2010.559
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 IFIP International Federation for Information Processing
About this paper
Cite this paper
Bokadia, S., Jain, R. (2024). Metamorphosis of Recommender Systems: Progressive Inclusion of Consumers. In: Sharma, S.K., Dwivedi, Y.K., Metri, B., Lal, B., Elbanna, A. (eds) Transfer, Diffusion and Adoption of Next-Generation Digital Technologies. TDIT 2023. IFIP Advances in Information and Communication Technology, vol 699. Springer, Cham. https://doi.org/10.1007/978-3-031-50204-0_28
Download citation
DOI: https://doi.org/10.1007/978-3-031-50204-0_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-50203-3
Online ISBN: 978-3-031-50204-0
eBook Packages: Computer ScienceComputer Science (R0)