Abstract
Point cloud sequences are unordered and irregular, which means extracting spatial and temporal features from them is challenging. This paper presents a novel network named Serial Spatial and Temporal Transformer (SerialSTTR) for point cloud sequences recognition. Specifically, point-based self-attention is used to gather global information on each point at the spatial level, and frame-based self-attention is used to reconstruct the sequences with motion features at the temporal level. In addition, an orderly local module is proposed to supplement the local feature learning ability that spatial transformer lacks. And relative position encoding is adopted to complete the order information for temporal transformer. Extensive experiments demonstrate that the SerialSTTR achieves the state-of-the-art performance on 3D human action recognition with the challenging dataset MSR-Action3D. And to show its generalizability, experiments on gesture recognition with SHREC’17 dataset are performed, which also present competitive results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aouaidjia, K., Sheng, B., Li, P., Kim, J., Feng, D.D.: Efficient body motion quantification and similarity evaluation using 3-d joints skeleton coordinates. IEEE Trans. Syst. Man Cybern. Syst. 51(5), 2774–2788 (2019)
Chen, L., Zhang, Q.: Ddgcn: graph convolution network based on direction and distance for point cloud learning. Vis. Comput. 39(3), 863–873 (2023)
Chen, Y., Zhao, L., Peng, X., Yuan, J., Metaxas, D.: Construct dynamic graphs for hand gesture recognition via spatial-temporal attention. In: Proceedings of the British Machine Vision Conference (BMVC), pp. 48.1-48.13 (2019)
De Smedt, Q., Wannous, H., Vandeborre, J.P.: Skeleton-based dynamic hand gesture recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–9 (2016)
De Smedt, Q., Wannous, H., Vandeborre, J.P., Guerry, J., Le Saux, B., Filliat, D.: Shrec’17 track: 3d hand gesture recognition using a depth and skeletal dataset. In: 3DOR-10th Eurographics Workshop on 3D Object Retrieval, pp. 1–6 (2017)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Fan, H., Yang, Y.: Pointrnn: point recurrent neural network for moving point cloud processing. arXiv preprint arXiv:1910.08287 (2019)
Fan, H., Yang, Y., Kankanhalli, M.: Point 4d transformer networks for spatio-temporal modeling in point cloud videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14204–14213 (2021)
Fan, H., Yu, X., Ding, Y., Yang, Y., Kankanhalli, M.: Pstnet: point spatio-temporal convolution on point cloud sequences. arXiv preprint arXiv:2205.13713 (2022)
Guo, M.H., Cai, J.X., Liu, Z.N., Mu, T.J., Martin, R.R., Hu, S.M.: Pct: point cloud transformer. Comput. Visual Media 7, 187–199 (2021)
He, P., Emami, P., Ranka, S., Rangarajan, A.: Learning scene dynamics from point cloud sequences. Int. J. Comput. Vision 130(3), 669–695 (2022)
Himeur, C.E., Lejemble, T., Pellegrini, T., Paulin, M., Barthe, L., Mellado, N.: Pcednet: a lightweight neural network for fast and interactive edge detection in 3d point clouds. ACM Trans. Graph. (TOG) 41(1), 1–21 (2021)
Hou, J., Wang, G., Chen, X., Xue, J.H., Zhu, R., Yang, H.: Spatial-temporal attention res-tcn for skeleton-based dynamic hand gesture recognition. In: Computer Vision - ECCV 2018 Workshops, pp. 273–286 (2019)
Li, W., Zhang, Z., Liu, Z.: Action recognition based on a bag of 3d points. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, pp. 9–14. IEEE (2010)
Li, X., Huang, Q., Wang, Z., Yang, T.: Virtualactionnet: a strong two-stream point cloud sequence network for human action recognition. J. Vis. Commun. Image Represent. 89, 103641 (2022)
Lin, L., Huang, P., Fu, C.W., Xu, K., Zhang, H., Huang, H.: On learning the right attention point for feature enhancement. Sci. China Inf. Sci. 66(1), 1–13 (2023)
Lin, X., Sun, S., Huang, W., Sheng, B., Li, P., Feng, D.D.: Eapt: efficient attention pyramid transformer for image processing. IEEE Trans. Multimed., 50–61 (2021)
Liu, J., Xu, D.: Geometrymotion-net: a strong two-stream baseline for 3d action recognition. IEEE Trans. Circuits Syst. Video Technol. 31(12), 4711–4721 (2021)
Liu, X., Yan, M., Bohg, J.: Meteornet: deep learning on dynamic 3d point cloud sequences. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9246–9255 (2019)
Lu, H., Nie, J.: Coarse registration of point cloud base on deep local extremum detection and attentive description. Available at SSRN 4106324
Luo, W., Yang, B., Urtasun, R.: Fast and furious: Real time end-to-end 3d detection, tracking and motion forecasting with a single convolutional net. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 3569–3577 (2018)
Min, Y., Zhang, Y., Chai, X., Chen, X.: An efficient pointlstm for point clouds based gesture recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5761–5770 (2020)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3d classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. Adv. Neural. Inf. Process. Syst. 30, 5099–5108 (2017)
Riegler, G., Osman Ulusoy, A., Geiger, A.: Octnet: learning deep 3d representations at high resolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3577–3586 (2017)
Tu, Z., et al.: A survey of variational and cnn-based optical flow techniques. Sig. Process. Image Commun. 72, 9–24 (2019)
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł, Polosukhin, I.: Attention is all you need. Adv. Neural. Inf. Process. Syst. 30, 6000–6010 (2017)
Vieira, A.W., Nascimento, E.R., Oliveira, G.L., Liu, Z., Campos, M.F.M.: STOP: space-time occupancy patterns for 3D action recognition from depth map sequences. In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds.) CIARP 2012. LNCS, vol. 7441, pp. 252–259. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33275-3_31
Wang, J., Liu, Z., Wu, Y., Yuan, J.: Mining actionlet ensemble for action recognition with depth cameras. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1290–1297. IEEE (2012)
Wang, Y., et al.: 3dv: 3D dynamic voxel for action recognition in depth video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 511–520 (2020)
Wei, Y., Liu, H., Xie, T., Ke, Q., Guo, Y.: Spatial-temporal transformer for 3d point cloud sequences. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1171–1180 (2022)
Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, pp. 7444–7452 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zou, S., Zhang, J. (2024). Serial Spatial and Temporal Transformer for Point Cloud Sequences Recognition. In: Sheng, B., Bi, L., Kim, J., Magnenat-Thalmann, N., Thalmann, D. (eds) Advances in Computer Graphics. CGI 2023. Lecture Notes in Computer Science, vol 14495. Springer, Cham. https://doi.org/10.1007/978-3-031-50069-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-50069-5_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-50068-8
Online ISBN: 978-3-031-50069-5
eBook Packages: Computer ScienceComputer Science (R0)