[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

TSC-Net: Theme-Style-Color Guided Artistic Image Aesthetics Assessment Network

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14495))

Included in the following conference series:

  • 651 Accesses

Abstract

Image aesthetic assessment is a hot issue in current research, but less research has been done in the art image aesthetic assessment field, mainly due to the lack of large-scale artwork datasets. The recently proposed BAID dataset fills this gap and allows us to delve into the aesthetic assessment methods of artworks, and this research will contribute to the study of artworks and can also be applied to real-life scenarios, such as art exams, to assist in judging. In this paper, we propose a new method, TSC-Net (Theme-Style-Color guided Artistic Image Aesthetics Assessment Network), which extracts image theme information, image style information, and color information and fuses general aesthetic information to assess art images. Experiments show that our proposed method outperforms existing methods using the BAID dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 51.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yi, R., Tian, H., Gu, Z., Lai, Y.-K., Rosin, P.: Towards Artistic Image Aesthetics Assessment: a Large-scale Dataset and a New Method. ArXiv. (2023)

    Google Scholar 

  2. Lu, X., Lin, Z., Jin, H., Yang, J., Wang, J.Z.: RAPID: rating pictorial aesthetics using deep learning. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 457–466 (2014). https://doi.org/10.1145/2647868.2654927

  3. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60, 84–90 (2017). https://doi.org/10.1145/3065386

    Article  Google Scholar 

  4. Talebi, H., Milanfar, P.: NIMA: neural image assessment. IEEE Trans. on Image Process. 27, 3998–4011 (2018). https://doi.org/10.1109/TIP.2018.2831899

    Article  MathSciNet  Google Scholar 

  5. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. ArXiv. (2017)

    Google Scholar 

  6. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR. (2014)

    Google Scholar 

  7. Szegedy, C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2015). https://doi.org/10.1109/CVPR.2015.7298594

  8. Kong, S., Shen, X., Lin, Z., Mech, R., Fowlkes, C.: Photo Aesthetics Ranking Network with Attributes and Content Adaptation. 9905, 662–679 (2016).https://doi.org/10.1007/978-3-319-46448-0_40

  9. Gao, F., Li, Z., Jun, Y., Junze, Y., Huang, Q., Tian, Q.: Style-adaptive photo aesthetic rating via convolutional neural networks and multi-task learning. Neurocomputing 395, 247–254 (2020). https://doi.org/10.1016/j.neucom.2018.06.099

    Article  Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  11. Murray, N., Marchesotti, L., Perronnin, F.: AVA: A large-scale database for aesthetic visual analysis. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2408–2415 (2012). https://doi.org/10.1109/CVPR.2012.6247954

  12. Cui, C., Liu, H., Lian, T., Nie, L., Zhu, L., Yin, Y.: Distribution-Oriented aesthetics assessment with Semantic-aware hybrid network. IEEE Trans. Multimedia 21(5), 1209–1220 (2019). https://doi.org/10.1109/TMM.2018.2875357

    Article  Google Scholar 

  13. He, S., Zhang, Y., Xie, R., Jiang, D., Ming, A.: Rethinking image aesthetics assessment: models, datasets and benchmarks. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, pp. 942–948. International Joint Conferences on Artificial Intelligence Organization, Vienna, Austria (2022). https://doi.org/10.24963/ijcai.2022/132

  14. Hosu, V., Goldlucke, B., Saupe, D.: Effective aesthetics prediction with multi-level spatially pooled features. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9367–9375 (2019). https://doi.org/10.1109/CVPR.2019.00960

  15. Deng, J., Dong, W., Socher, R., Li, L.-J., Kai Li, Li Fei-Fei: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009). https://doi.org/10.1109/CVPR.2009.5206848

  16. Huang, X., Belongie, S.: Arbitrary Style Transfer in Real-Time with Adaptive Instance Normalization. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 1510–1519 (2017). https://doi.org/10.1109/ICCV.2017.167

  17. Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., Yang, M.-H.: Universal style transfer via feature transforms. Presented at the NIPS May 23 (2017)

    Google Scholar 

  18. Liu, S., et al.: AdaAttN: revisit attention mechanism in arbitrary neural style transfer. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6629–6638 (2021). https://doi.org/10.1109/ICCV48922.2021.00658

  19. Park, D.Y., Lee, K.H.: Arbitrary style transfer with style-attentional networks. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5873–5881 (2019). https://doi.org/10.1109/CVPR.2019.00603

  20. Lee, B., et al.: Dissecting landscape art history with information theory. Proc. Natl. Acad. Sci. U.S.A. 117, 26580–26590 (2020). https://doi.org/10.1073/pnas.2011927117

    Article  Google Scholar 

  21. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.: MobileNetV2: inverted residuals and linear bottlenecks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018). https://doi.org/10.1109/CVPR.2018.00474

  22. Sheng, K., Dong, W., Ma, C., Mei, X., Huang, F., Hu, B.-G.: Attention-based multi-patch aggregation for image aesthetic assessment. In: Proceedings of the 26th ACM International Conference on Multimedia, pp. 879–886 (2018). https://doi.org/10.1145/3240508.3240554

  23. Zhu, H., Li, L., Wu, J., Zhao, S., Ding, G., Shi, G.: Personalized image aesthetics assessment via Meta-Learning with bilevel gradient optimization. IEEE Trans. Cybern. 52, 1798–1811 (2022). https://doi.org/10.1109/TCYB.2020.2984670

    Article  Google Scholar 

  24. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: A 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40, 1452–1464 (2018). https://doi.org/10.1109/TPAMI.2017.2723009

    Article  Google Scholar 

  25. Yu, Y., Li, D., Li, B., Li, N.: Multi-style image generation based on semantic image. Vis. Comput. (2023). https://doi.org/10.1007/s00371-023-03042-2

    Article  Google Scholar 

  26. Li, H., Sheng, B., Li, P., Ali, R., Chen, C.L.P.: Globally and locally semantic colorization via exemplar-based Broad-GAN. IEEE Trans. Image Process. 30, 8526–8539 (2021). https://doi.org/10.1109/TIP.2021.3117061

    Article  Google Scholar 

  27. Sun, Q., et al.: A GAN-based approach toward architectural line drawing colorization prototyping. Vis. Comput.Comput. 38, 1283–1300 (2022). https://doi.org/10.1007/s00371-021-02219-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongzhen Ke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Cao, W., Sheng, N., Shi, H., Guo, C., Ke, Y. (2024). TSC-Net: Theme-Style-Color Guided Artistic Image Aesthetics Assessment Network. In: Sheng, B., Bi, L., Kim, J., Magnenat-Thalmann, N., Thalmann, D. (eds) Advances in Computer Graphics. CGI 2023. Lecture Notes in Computer Science, vol 14495. Springer, Cham. https://doi.org/10.1007/978-3-031-50069-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50069-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50068-8

  • Online ISBN: 978-3-031-50069-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics