[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Self-similarity of Communities of the ABCD Model

  • Conference paper
  • First Online:
Modelling and Mining Networks (WAW 2024)

Abstract

The Artificial Benchmark for Community Detection (ABCD) graph is a random graph model with community structure and power-law distribution for both degrees and community sizes. The model generates graphs similar to the well-known LFR model but it is faster and can be investigated analytically. In this paper, we show that the ABCD model exhibits some interesting self-similar behaviour, namely, the degree distribution of ground-truth communities is asymptotically the same as the degree distribution of the whole graph (appropriately normalized based on their sizes). As a result, we can not only estimate the number of edges induced by each community but also the number of self-loops and multi-edges generated during the process. Understanding these quantities is important as (a) rewiring self-loops and multi-edges to keep the graph simple is an expensive part of the algorithm, and (b) every rewiring causes the underlying configuration models to deviate slightly from uniform simple graphs on their corresponding degree sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 69.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/bkamins/ABCDGraphGenerator.jl/.

  2. 2.

    https://github.com/tolcz/ABCDeGraphGenerator.jl/.

  3. 3.

    https://github.com/bkamins/ABCDHypergraphGenerator.jl.

References

  1. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Google Scholar 

  2. Bender, E.A., Canfield, E.R.: The asymptotic number of labeled graphs with given degree sequences. J. Comb. Theory Ser. A 24(3), 296–307 (1978)

    Article  MathSciNet  Google Scholar 

  3. Blagus, N., Šubelj, L., Bajec, M.: Self-similar scaling of density in complex real-world networks. Phys. A 391(8), 2794–2802 (2012)

    Article  Google Scholar 

  4. Bollobás, B.: A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. Eur. J. Comb. 1(4), 311–316 (1980)

    Article  MathSciNet  Google Scholar 

  5. Broido, A.D., Clauset, A.: Scale-free networks are rare. Nat. Commun. 10(1), 1017 (2019)

    Article  Google Scholar 

  6. Clauset, A., Newman, M.E., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70(6), 066111 (2004)

    Article  Google Scholar 

  7. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  8. Fortunato, S., Barthelemy, M.: Resolution limit in community detection. Proc. Nat. Acad. Sci. 104(1), 36–41 (2007)

    Article  Google Scholar 

  9. Gallos, L.K., Song, C., Makse, H.A.: A review of fractality and self-similarity in complex networks. Phys. A 386(2), 686–691 (2007)

    Article  Google Scholar 

  10. Guimera, R., Danon, L., Diaz-Guilera, A., Giralt, F., Arenas, A.: Self-similar community structure in a network of human interactions. Phys. Rev. E 68(6), 065103 (2003)

    Article  Google Scholar 

  11. Holme, P.: Rare and everywhere: perspectives on scale-free networks. Nat. Commun. 10(1), 1016 (2019)

    Article  Google Scholar 

  12. Janson, S.: Random graphs with given vertex degrees and switchings. Random Struct. Algorithms 57(1), 3–31 (2020)

    Article  MathSciNet  Google Scholar 

  13. Kamiński, B., Pankratz, B., Prałat, P., Théberge, F.: Modularity of the ABCD random graph model with community structure. J. Complex Netw. 10(6), cnac050 (2022)

    Google Scholar 

  14. Kamiński, B., Prałat, P., Théberge, F.: Artificial benchmark for community detection (ABCD)-fast random graph model with community structure. Netw. Sci., 1–26 (2021)

    Google Scholar 

  15. Kamiński, B., Prałat, P., Théberge, F.: Artificial benchmark for community detection with outliers (ABCD+o). Appl. Netw. Sci. 8(1), 25 (2023)

    Article  Google Scholar 

  16. Kamiński, B., Prałat, P., Théberge, F.: Hypergraph artificial benchmark for community detection (h–ABCD). J. Complex Netw. 11(4), cnad028 (2023)

    Google Scholar 

  17. Kamiński, B., Olczak, T., Pankratz, B., Prałat, P., Théberge, F.: Properties and performance of the ABCDe random graph model with community structure. Big Data Res. 30, 100348 (2022)

    Article  Google Scholar 

  18. Kim, J., Goh, K.I., Salvi, G., Oh, E., Kahng, B., Kim, D.: Fractality in complex networks: critical and supercritical skeletons. Phys. Rev. E 75(1), 016110 (2007)

    Article  Google Scholar 

  19. Lancichinetti, A., Fortunato, S.: Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. Phys. Rev. E 80(1), 016118 (2009)

    Article  Google Scholar 

  20. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78(4), 046110 (2008)

    Article  Google Scholar 

  21. Mandelbrot, B.B.: The Fractal Geometry of Nature, vol. 1. WH Freeman New York (1982)

    Google Scholar 

  22. Serrano, M.Á., Krioukov, D., Boguná, M.: Self-similarity of complex networks and hidden metric spaces. Phys. Rev. Lett. 100(7), 078701 (2008)

    Article  Google Scholar 

  23. Song, C., Havlin, S., Makse, H.A.: Self-similarity of complex networks. Nature 433(7024), 392–395 (2005)

    Article  Google Scholar 

  24. Wormald, N.C.: Generating random regular graphs. J. Algorithms 5(2), 247–280 (1984)

    Article  MathSciNet  Google Scholar 

  25. Wormald, N.C., et al.: Models of random regular graphs. In: London Mathematical Society Lecture Note Series, pp. 239–298 (1999)

    Google Scholar 

  26. Zhou, B., Meng, X., Stanley, H.E.: Power-law distribution of degree-degree distance: a better representation of the scale-free property of complex networks. Proc. Nat. Acad. Sci. 117(26), 14812–14818 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Prałat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barrett, J., Kamiński, B., Prałat, P., Théberge, F. (2024). Self-similarity of Communities of the ABCD Model. In: Dewar, M., et al. Modelling and Mining Networks. WAW 2024. Lecture Notes in Computer Science, vol 14671. Springer, Cham. https://doi.org/10.1007/978-3-031-59205-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-59205-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-59204-1

  • Online ISBN: 978-3-031-59205-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics