Abstract
Human pose prediction, interchangeably known as human pose forecasting, is a daunting endeavor within computer vision. Owing to its pivotal role in many advanced applications and research avenues like smart surveillance, autonomous vehicles, and healthcare, human pose prediction models must exhibit high precision and efficacy to curb error dissemination, especially in real-world settings. In this paper, we unveil GAT-POSE, an innovative fusion framework marrying the strengths of graph autoencoders and transformers crafted for deterministic future pose prediction. Our methodology encapsulates a singular compression and tokenization of pose sequences through graph autoencoders. By harnessing a transformer architecture for pose prediction and capitalizing on the tokenized pose sequences, we construct a new paradigm for precise pose prediction. The robustness of GAT-POSE is ascertained through its deployment in three diverse training and testing ecosystems, coupled with the utilization of multiple datasets for a thorough appraisal. The stringency of our experimental setup underscores that GAT-POSE outperforms contemporary methodologies in human pose prediction, bearing significant promise to influence a variety of real-world applications favorably and lay a robust foundation for subsequent explorations in computer vision research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmed, S., Huda, M.N., Rajbhandari, S., Saha, C., Elshaw, M., Kanarachos, S.: Pedestrian and cyclist detection and intent estimation for autonomous vehicles: a survey. Appl. Sci. 9(11), 2335 (2019)
Aliakbarian, S., Saleh, F.S., Salzmann, M., Petersson, L., Gould, S.: A stochastic conditioning scheme for diverse human motion prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5223–5232 (2020)
Barsoum, E., Kender, J., Liu, Z.: HP-GAN: probabilistic 3D human motion prediction via GAN. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1418–1427 (2018)
Bütepage, J., Kjellström, H., Kragic, D.: Anticipating many futures: online human motion prediction and generation for human-robot interaction. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 4563–4570. IEEE (2018)
Chao, X., et al.: Adversarial refinement network for human motion prediction. In: Proceedings of the Asian Conference on Computer Vision (2020)
Corona, E., Pumarola, A., Alenya, G., Moreno-Noguer, F.: Context-aware human motion prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6992–7001 (2020)
Cui, Q., Sun, H., Yang, F.: Learning dynamic relationships for 3D human motion prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6519–6527 (2020)
Cui, Q., Sun, H., Yang, F.: Learning dynamic relationships for 3D human motion prediction. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6519–6527 (2020)
Guo, X., Choi, J.: Human motion prediction via learning local structure representations and temporal dependencies. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 2580–2587 (2019)
Huang, Z., Liu, Y., Fang, Y., Horn, B.K.: Video-based fall detection for seniors with human pose estimation. In: 2018 4th International Conference on Universal Village (UV), pp. 1–4. IEEE (2018)
Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6m: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1339 (2013)
Jain, D.K., Zareapoor, M., Jain, R., Kathuria, A., Bachhety, S.: GAN-poser: an improvised bidirectional GAN model for human motion prediction. Neural Comput. Appl. 32(18), 14579–14591 (2020)
Jeon, H., Yoon, Y., Kim, D.: Lightweight 2D human pose estimation for fitness coaching system. In: 2021 36th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), pp. 1–4. IEEE (2021)
Kundu, J.N., Gor, M., Babu, R.V.: BiHMP-GAN: bidirectional 3D human motion prediction GAN. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8553–8560 (2019)
Li, C., Zhang, Z., Lee, W.S., Lee, G.H.: Convolutional sequence to sequence model for human dynamics. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5226–5234 (2018)
Li, C., Zhang, Z., Lee, W.S., Lee, G.H.: Convolutional sequence to sequence model for human dynamics. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5226–5234 (2018)
Li, M., Chen, S., Zhao, Y., Zhang, Y., Wang, Y., Tian, Q.: Dynamic multiscale graph neural networks for 3D skeleton based human motion prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 214–223 (2020)
Li, M., Chen, S., Zhao, Y., Zhang, Y., Wang, Y., Tian, Q.: Multiscale spatio-temporal graph neural networks for 3D skeleton-based motion prediction. IEEE Trans. Image Process. 30, 7760–7775 (2021)
Li, Y., et al.: Efficient convolutional hierarchical autoencoder for human motion prediction. Vis. Comput. 35, 1143–1156 (2019)
Liu, D., Li, Q., Li, S., Kong, J., Qi, M.: Non-autoregressive sparse transformer networks for pedestrian trajectory prediction. Appl. Sci. 13(5), 3296 (2023)
Liu, S., Huang, X., Fu, N., Li, C., Su, Z., Ostadabbas, S.: Simultaneously-collected multimodal lying pose dataset: enabling in-bed human pose monitoring. IEEE Trans. Pattern Anal. Mach. Intell. 45(1), 1106–1118 (2022)
Liu, X., Yin, J., Liu, J., Ding, P., Liu, J., Liu, H.: TrajectoryCNN: a new spatio-temporal feature learning network for human motion prediction. IEEE Trans. Circuits Syst. Video Technol. 31(6), 2133–2146 (2020)
Liu, Z., et al.: Motion prediction using trajectory cues. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 13299–13308 (2021)
Lyu, K., Chen, H., Liu, Z., Zhang, B., Wang, R.: 3D human motion prediction: a survey. Neurocomputing 489, 345–365 (2022)
Lyu, K., Liu, Z., Wu, S., Chen, H., Zhang, X., Yin, Y.: Learning human motion prediction via stochastic differential equations. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 4976–4984 (2021)
Ma, T., Nie, Y., Long, C., Zhang, Q., Li, G.: Progressively generating better initial guesses towards next stages for high-quality human motion prediction. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6437–6446 (2022)
Mahdavian, M., Nikdel, P., TaherAhmadi, M., Chen, M.: STPOTR: simultaneous human trajectory and pose prediction using a non-autoregressive transformer for robot follow-ahead. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 9959–9965. IEEE (2023)
Mandal, S., Biswas, S., Balas, V.E., Shaw, R.N., Ghosh, A.: Motion prediction for autonomous vehicles from Lyft dataset using deep learning. In: 2020 IEEE 5th International Conference on Computing Communication and Automation (ICCCA), pp. 768–773. IEEE (2020)
Mangalam, K., Adeli, E., Lee, K.H., Gaidon, A., Niebles, J.C.: Disentangling human dynamics for pedestrian locomotion forecasting with noisy supervision. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2784–2793 (2020)
Mao, W., Liu, M., Salzmann, M.: History repeats itself: human motion prediction via motion attention. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 474–489. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_28
Mao, W., Liu, M., Salzmann, M., Li, H.: Learning trajectory dependencies for human motion prediction. In: IEEE/CVF International Conference on Computer Vision (ICCV) (2019)
Martinez, J., Black, M.J., Romero, J.: On human motion prediction using recurrent neural networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2891–2900 (2017)
Martínez-González, A., Villamizar, M., Odobez, J.M.: Pose transformers (POTR): human motion prediction with non-autoregressive transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2276–2284 (2021)
Medsker, L.R., Jain, L.: Recurrent neural networks. Des. Appl. 5(64–67), 2 (2001)
Nikdel, P., Mahdavian, M., Chen, M.: DMMGAN: diverse multi motion prediction of 3D human joints using attention-based generative adversarial network. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 9938–9944. IEEE (2023)
Noghre, G.A., Pazho, A.D., Katariya, V., Tabkhi, H.: Understanding the challenges and opportunities of pose-based anomaly detection. arXiv preprint arXiv:2303.05463 (2023)
Pazho, A.D., et al.: Ancilia: scalable intelligent video surveillance for the artificial intelligence of things. IEEE Internet Things J. (2023)
Saadatnejad, S., et al.: A generic diffusion-based approach for 3D human pose prediction in the wild. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 8246–8253 (2023). https://doi.org/10.1109/ICRA48891.2023.10160399
Saadatnejad, S., et al.: A generic diffusion-based approach for 3D human pose prediction in the wild. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 8246–8253. IEEE (2023)
Sofianos, T., Sampieri, A., Franco, L., Galasso, F.: Space-time-separable graph convolutional network for pose forecasting. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 11209–11218 (2021)
Tang, Y., et al.: Flag3D: a 3D fitness activity dataset with language instruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22106–22117 (2023)
Wang, H., Dong, J., Cheng, B., Feng, J.: PVRED: a position-velocity recurrent encoder-decoder for human motion prediction. IEEE Trans. Image Process. 30, 6096–6106 (2021)
Wang, Y., Wang, X., Jiang, P., Wang, F.: RNN-based human motion prediction via differential sequence representation. In: 2019 IEEE 6th International Conference on Cloud Computing and Intelligence Systems (CCIS), pp. 138–143. IEEE (2019)
Yang, X., Ren, X., Chen, M., Wang, L., Ding, Y.: Human posture recognition in intelligent healthcare. In: Journal of Physics: Conference Series, vol. 1437, p. 012014. IOP Publishing (2020)
Yu, H., et al.: Towards realistic 3D human motion prediction with a spatio-temporal cross-transformer approach. IEEE Trans. Circuits Syst. Video Technol. (2023)
Yu, S., et al.: Regularity learning via explicit distribution modeling for skeletal video anomaly detection. IEEE Trans. Circuits Syst. Video Technol. (2023)
Yuan, Y., Kitani, K.: DLow: diversifying latent flows for diverse human motion prediction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 346–364. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_20
Zhong, C., Hu, L., Zhang, Z., Ye, Y., Xia, S.: Spatio-temporal gating-adjacency GCN for human motion prediction. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6447–6456 (2022)
Zimmermann, C., Welschehold, T., Dornhege, C., Burgard, W., Brox, T.: 3D human pose estimation in RGBD images for robotic task learning. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1986–1992. IEEE (2018)
Zou, J., et al.: Intelligent fitness trainer system based on human pose estimation. In: Sun, S., Fu, M., Xu, L. (eds.) ICSINC 2018. LNEE, vol. 550, pp. 593–599. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-7123-3_69
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Pazho, A.D., Maldonado, G., Tabkhi, H. (2024). GAT-POSE: Graph Autoencoder-Transformer Fusion for Future Pose Prediction. In: Filipe, J., Röning, J. (eds) Robotics, Computer Vision and Intelligent Systems. ROBOVIS 2024. Communications in Computer and Information Science, vol 2077. Springer, Cham. https://doi.org/10.1007/978-3-031-59057-3_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-59057-3_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-59056-6
Online ISBN: 978-3-031-59057-3
eBook Packages: Computer ScienceComputer Science (R0)