Abstract
Probing physical bits in hardware has compromised cryptographic systems. This work investigates how to instantiate Shamir’s secret sharing so that the physical probes into its shares reveal statistically insignificant information about the secret.
Over prime fields, Maji, Nguyen, Paskin-Cherniavsky, Suad, and Wang (EUROCRYPT 2021) proved that choosing random evaluation places achieves this objective with high probability. Our work extends their randomized construction to composite order fields – particularly for fields with characteristic 2. Next, this work presents an algorithm to classify evaluation places as secure or vulnerable against physical-bit probes for some specific cases.
Our security analysis of the randomized construction is Fourier-analytic, and the classification techniques are combinatorial. Our analysis relies on (1) contemporary Bézout-theorem-type algebraic complexity results that bound the number of simultaneous zeroes of a system of polynomial equations over composite order fields and (2) characterization of the zeroes of an appropriate generalized Vandermonde determinant.
Hemanta K. Maji, and Xiuyu Ye are supported in part by an NSF CRII Award CNS–1566499, NSF SMALL Awards CNS–1618822 and CNS–2055605, the IARPA HECTOR project, MITRE Innovation Program Academic Cybersecurity Research Awards (2019–2020, 2020–2021), a Ross-Lynn Research Scholars Grant (2021–2022), a Purdue Research Foundation (PRF) Award (2017–2018), and The Center for Science of Information, an NSF Science and Technology Center, Cooperative Agreement CCF–0939370. Hai H. Nguyen is supported by the Zurich Information Security & Privacy Center (ZISC). Anat Paskin-Cherniavsky is supported by the Ariel Cyber Innovation Center in conjunction with the Israel National Cyber directorate in the Prime Minister’s Office.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Leakage-resilient secure computation considers adversaries that corrupt parties to obtain their shares and leak additional information from honest parties’ shares.
- 2.
Looking ahead, we will prove a significantly stronger generalization of Lemma 9 for arbitrary number of parties.
- 3.
First perform Gaussian elimination, and then the determinant is the product of the diagonal elements.
References
Adams, D.Q., et al.: Lower bounds for leakage-resilient secret sharing schemes against probing attacks. In: ISIT 2021 (2021)
Aggarwal, D., et al.: Stronger leakage-resilient and non-malleable secret sharing schemes for general access structures. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 510–539. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_18
Badrinarayanan, S., Srinivasan, A.: Revisiting non-malleable secret sharing. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 593–622. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_20
Bafna, M., Sudan, M., Velusamy, S., Xiang,D.: Elementary analysis of isolated zeroes of a polynomial system (2021). arXiv preprint arXiv:2102.00602
Benhamouda, F., Degwekar, A., Ishai, Y., Rabin, T.: On the local leakage resilience of linear secret sharing schemes. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 531–561. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_18
Benhamouda, F., Degwekar, A., Ishai, Y., Rabin, T.: On the local leakage resilience of linear secret sharing schemes. J. Cryptol. 34(2), 10 (2021). https://doi.org/10.1007/s00145-021-09375-2
Bishop, A., Pastro, V., Rajaraman, R., Wichs, D.: Essentially optimal robust secret sharing with maximal corruptions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 58–86. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_3
Bogdanov, A., Ishai, Y., Srinivasan, A.: Unconditionally secure computation against low-complexity leakage. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 387–416. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_14
Brandão, L.T.A.N., Peralta, R.: NIST first call for multi-party threshold schemes, 25 January 2023. https://csrc.nist.gov/publications/detail/nistir/8214c/draft
Chandran, N., Kanukurthi, B., Lakshmi, S., Obbattu, B., Sekar, S.: Short leakage resilient and non-malleable secret sharing schemes. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part I, vol. 13507, LNCS, pp. 178–207. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-15802-5_7
Chattopadhyay, E., et al.: Extractors and secret sharing against bounded collusion protocols. In: 61st FOCS, pp. 1226–1242. IEEE Computer Society Press, November 2020. https://doi.org/10.1109/FOCS46700.2020.00117
Con, R., Tamo, I.: Nonlinear repair of reed-Solomon codes. IEEE Trans. Inf. Theory 68(8), 5165–5177 (2022). https://doi.org/10.1109/TIT.2022.3167615
Costes, N., Stam, M.: Redundant code-based masking revisited. IACR TCHES. 2021(1), 426–450 (2021). https://tches.iacr.org/index.php/TCHES/article/view/8740, https://doi.org/10.46586/tches.v2021.i1.426-450
Dimakis, A.G., Godfrey, P.B., Wu, Y., Wainwright, M.J., Ramchandran, K.: Network coding for distributed storage systems. IEEE Trans. Inf. Theory 56(9), 4539–4551 (2010)
El Rouayheb, S., Ramchandran,K.: Fractional repetition codes for repair in distributed storage systems. In: 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1510–1517. IEEE (2010)
Fehr, S., Yuan, C.: Towards optimal robust secret sharing with security against a rushing adversary. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 472–499. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_16
Fehr, S., Yuan, C.: Robust secret sharing with almost optimal share size and security against rushing adversaries. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12552, pp. 470–498. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64381-2_17
Goparaju, S., El Rouayheb, S., Calderbank, R., Vincent Poor, H.: Data secrecy in distributed storage systems under exact repair. In: 2013 International Symposium on Network Coding (NetCod), pp. 1–6. IEEE (2013)
Goparaju, S., Fazeli, A., Vardy, A.: Minimum storage regenerating codes for all parameters. IEEE Trans. Inf. Theory 63(10), 6318–6328 (2017)
Goyal, V., Kumar, A.: Non-malleable secret sharing. In: Diakonikolas, I., Kempe, D., Henzinger, M. eds. 50th ACM STOC, pp. 685–698. ACM Press, June 2018. https://doi.org/10.1145/3188745.3188872
Guruswami, V., Wootters, M.: Repairing reed-Solomon codes. In: Wichs, D., Mansour, Y., (eds.) 48th ACM STOC, pp. 216–226. ACM Press, June 2016. https://doi.org/10.1145/2897518.2897525
Guruswami, V., Wootters, M.: Repairing reed-Solomon codes. IEEE Trans. Inf. Theory 63(9), 5684–5698 (2017). https://doi.org/10.1109/TIT.2017.2702660
Hazay, C., Venkitasubramaniam, M., Weiss, M.: The price of active security in cryptographic protocols. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 184–215. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_7
Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_27
Klein, O., Komargodski, I.: New bounds on the local leakage resilience of Shamir’s secret sharing scheme. In: Handschuh, H., Lysyanskaya, A. (eds.) Advances in Cryptology–CRYPTO 2023. CRYPTO 2023. LNCS, vol. 14081, pp. 139–170. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38557-5_5
Kumar, A., Meka, R., Sahai, A.: Leakage-resilient secret sharing against colluding parties. In: Zuckerman, D., (ed.) 60th FOCS, pp. 636–660. IEEE Computer Society Press, November 2019. https://doi.org/10.1109/FOCS.2019.00045
Maji, H.K., Nguyen, H.H., Paskin-Cherniavsky, A., Suad, T., Wang, M.: Leakage-resilience of the Shamir secret-sharing scheme against physical-bit leakages. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 344–374. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6_12
Maji, H.K., et al.:. Tight estimate of the local leakage resilience of the additive secret-sharing scheme & its consequences. In: Dachman-Soled, D. (ed.) 3rd Conference on Information-Theoretic Cryptography, ITC 2022, July 5-7, 2022, Cambridge, MA, USA, vol. 230, LIPIcs, pp. 16:1–16:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.ITC.2022.16
Maji, H.K., Nguyen, H.H., Paskin-Cherniavsky, A., Wang, M.: Improved bound on the local leakage-resilience of Shamir’s secret sharing. In: IEEE International Symposium on Information Theory, ISIT 2022, Espoo, Finland, June 26–July 1, 2022, pp. 2678–2683. IEEE (2022). https://doi.org/10.1109/ISIT50566.2022.9834695
Maji, H.K., Nguyen, H.H., Paskin-Cherniavsky, A., Ye, X.: Security of Shamir’s secret-sharing against physical bit leakage: Secure evaluation places (2023). https://www.cs.purdue.edu/homes/hmaji/papers/MNPY23.pdf
Maji, H.K., Paskin-Cherniavsky, A., Suad, T., Wang, M.: Constructing locally leakage-resilient linear secret-sharing schemes. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12827, pp. 779–808. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84252-9_26
Manurangsi, P., Srinivasan, A., Vasudevan, P.N.: Nearly optimal robust secret sharing against rushing adversaries. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 156–185. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_6
Nielsen, J.B., Simkin, M.: Lower bounds for leakage-resilient secret sharing. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 556–577. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_20
NIST. Randomness beacon project. http://www.nist.gov/itl/csd/ct/nist_beacon.cfm
Papailiopoulos, D.S., Dimakis, A.G., Cadambe, V.R.: Repair optimal erasure codes through Hadamard designs. IEEE Trans. Inf. Theory 59(5), 3021–3037 (2013)
Vinayak Rashmi, K., Shah, N.B., Vijay Kumar, P.: Optimal exact-regenerating codes for distributed storage at the MSR and MBR points via a product-matrix construction. IEEE Trans. Inf. Theory 57(8), 5227–5239 (2011)
Shamir, A.: How to share a secret. Commun. Assoc. Comput. Mach. 22(11), 612–613 (1979)
Srinivasan, A., Vasudevan, P.N.: Leakage resilient secret sharing and applications. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 480–509. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_17
Tamo, I., Wang, Z., Bruck, J.: Zigzag codes: MDS array codes with optimal rebuilding. IEEE Trans. Inf. Theory 59(3), 1597–1616 (2012)
Wang, Z., Tamo, I., Bruck, J.: Explicit minimum storage regenerating codes. IEEE Trans. Inf. Theory 62(8), 4466–4480 (2016)
Wooley, T.D.: A note on simultaneous congruences. J. Number Theory. 58(2), 288–297 (1996)
Ye, M., Barg, A.: Explicit constructions of high-rate MDS array codes with optimal repair bandwidth. IEEE Trans. Inf. Theory 63(4), 2001–2014 (2017)
Ye, M., Barg, A.: Explicit constructions of optimal-access MDS codes with nearly optimal sub-packetization. IEEE Trans. Inf. Theory 63(10), 6307–6317 (2017)
Zhao, X.: A note on multiple exponential sums in function fields. Finite Fields Appl. 18(1), 35–55 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Maji, H.K., Nguyen, H.H., Paskin-Cherniavsky, A., Ye, X. (2024). Constructing Leakage-Resilient Shamir’s Secret Sharing: Over Composite Order Fields. In: Joye, M., Leander, G. (eds) Advances in Cryptology – EUROCRYPT 2024. EUROCRYPT 2024. Lecture Notes in Computer Science, vol 14654. Springer, Cham. https://doi.org/10.1007/978-3-031-58737-5_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-58737-5_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-58736-8
Online ISBN: 978-3-031-58737-5
eBook Packages: Computer ScienceComputer Science (R0)