[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Predicting the Failure of Component X in the Scania Dataset with Graph Neural Networks

  • Conference paper
  • First Online:
Advances in Intelligent Data Analysis XXII (IDA 2024)

Abstract

We use Graph Neural Networks on signature-augmented graphs derived from time series for Predictive Maintenance. With this technique, we propose a solution to the Intelligent Data Analysis Industrial Challenge 2024 on the newly released SCANIA Component X dataset. We describe an Exploratory Data Analysis and preprocessing of the dataset, proposing improvements for its description in the SCANIA paper.

C. Metta—EU Horizon 2020: G.A. 871042 SoBig-Data++, NextGenEU - PNRR-PEAI (M4C2, investment 1.3) FAIR and “SoBigData.it”.

M. Parton—Funded by GNSAGA INdAM group.

M. Parton, A. Fois, M. Vegliò, C. Metta, M. Gregnanin—Computational resources provided by CLAI laboratory, Chieti-Pescara, Italy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 49.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Guang-BinHuang, Q.-Y.Z., Siew, C.-K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)

    Google Scholar 

  2. Scarselli, F., Gori, M., et al.: The graph neural network model. IEEE Trans. Neural Networks 20(1), 61–80 (2008)

    Article  Google Scholar 

  3. Lacasa, L., Luque, B., et al.: From time series to complex networks: the visibility graph. Proc. Nat. Acad. Sci. 105(13), 4972–4975 (2008)

    Article  MathSciNet  Google Scholar 

  4. Wu, Z., Pan, S., et al.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Networks Learn. Syst. 32(1), 4–24 (2020)

    Article  MathSciNet  Google Scholar 

  5. Dempster, A., Petitjean, F., Webb, G.I.: ROCKET: exceptionally fast and accurate time series classification. arXiv:1910.13051 (2019)

  6. Lyons, T.: Rough paths, signatures and the modelling of functions on streams. arXiv preprint arXiv:1405.4537 (2014)

  7. Chen, K.T.: A faithful representation of paths by noncommutative formal power series. Trans. AMS 89(2), 395–407 (1958)

    Google Scholar 

  8. Levin, D., Lyons, T., Ni, H.: Learning from the past, predicting the statistics for the future, learning an evolving system. arXiv:1309.0260 (2016)

  9. Gregnanin, M., De Smedt, J., et al.: Signature-based community detection for time series. In: Cherifi, H., Rocha, L.M., Cherifi, C., Donduran, M. (eds.) Studies in Computational Intelligence, vol. 1142, pp. 146–158. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-53499-7_12

  10. Gregnanin, M., De Smedt, J., et al.: Stock Price Time Series Foresting using Dynamic Graph Neural Networks and Attention Mechanism in Recurrent Neural Networks. In: MIDAS - ECML-PKDD (2023, to appear)

    Google Scholar 

  11. Kharazian, Z., Lindgren, T., et al.: SCANIA component X dataset: a real-world multivariate time series dataset for predictive maintenance. arXiv:2401.15199 (2024)

  12. Lyons, T., Ni, H.: Expected signature of brownian motion up to the first exit time. Ann. Probab. 43(5), 2729–2762 (2015)

    Google Scholar 

  13. Chevyrev, I., Lyons, T.: Characteristic functions of measures on geometric rough paths. Ann. Probab. 44(6), 4049–4082 (2016)

    Google Scholar 

  14. Levin, D., Lyons, T., Ni, H.: Learning from the past, predicting the statistics for the future, learning an evolving system. arXiv:1309.0260 (2013)

  15. Chevyrev, I., Kormilitzin, A.: A primer on the signature method in machine learning. arXiv preprint arXiv:1603.03788 (2016)

  16. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch geometric. In: ICLR Workshop on Representation Learning (2019)

    Google Scholar 

  17. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 (2018)

  18. Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. J. Roy. Stat. Soc. Ser. B 61(3), 611–622 (1999)

    Google Scholar 

  19. Time Series to Visibility Graphs (ts2vg) Python Packages. https://cbergillos.com/ts2vg

  20. Lacasa, L., Nicosia, V., Latora, V.: Network structure of multivariate time series. Sci. Rep. 5, 15508 (2015)

    Google Scholar 

  21. Metta, C., Fantozzi, M., et al.: Increasing biases can be more efficient than increasing weights. In: IEEE/CVF Winter Conference on Applications of Computer Vision WACV (2024)

    Google Scholar 

  22. Di Cecco, A., Metta, C., Fantozzi, M., Morandin, F., Parton, M.: GloNets: globally connected neural networks. In: Piatkowski, N., et al. (eds.) IDA 2024. LNCS, vol. 14641, pp. xx–yy. Springer, Cham (2024)

    Google Scholar 

  23. Freitas Silva, V., Eduarda Silva, M., et al.: MHVG2MTS: multilayer horizontal visibility graphs for multivariate time series. arXiv:2301.02333 (2023)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Parton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Parton, M., Fois, A., Vegliò, M., Metta, C., Gregnanin, M. (2024). Predicting the Failure of Component X in the Scania Dataset with Graph Neural Networks. In: Miliou, I., Piatkowski, N., Papapetrou, P. (eds) Advances in Intelligent Data Analysis XXII. IDA 2024. Lecture Notes in Computer Science, vol 14642. Springer, Cham. https://doi.org/10.1007/978-3-031-58553-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-58553-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-58555-5

  • Online ISBN: 978-3-031-58553-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics