Abstract
We use Graph Neural Networks on signature-augmented graphs derived from time series for Predictive Maintenance. With this technique, we propose a solution to the Intelligent Data Analysis Industrial Challenge 2024 on the newly released SCANIA Component X dataset. We describe an Exploratory Data Analysis and preprocessing of the dataset, proposing improvements for its description in the SCANIA paper.
C. Metta—EU Horizon 2020: G.A. 871042 SoBig-Data++, NextGenEU - PNRR-PEAI (M4C2, investment 1.3) FAIR and “SoBigData.it”.
M. Parton—Funded by GNSAGA INdAM group.
M. Parton, A. Fois, M. Vegliò, C. Metta, M. Gregnanin—Computational resources provided by CLAI laboratory, Chieti-Pescara, Italy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Guang-BinHuang, Q.-Y.Z., Siew, C.-K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)
Scarselli, F., Gori, M., et al.: The graph neural network model. IEEE Trans. Neural Networks 20(1), 61–80 (2008)
Lacasa, L., Luque, B., et al.: From time series to complex networks: the visibility graph. Proc. Nat. Acad. Sci. 105(13), 4972–4975 (2008)
Wu, Z., Pan, S., et al.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Networks Learn. Syst. 32(1), 4–24 (2020)
Dempster, A., Petitjean, F., Webb, G.I.: ROCKET: exceptionally fast and accurate time series classification. arXiv:1910.13051 (2019)
Lyons, T.: Rough paths, signatures and the modelling of functions on streams. arXiv preprint arXiv:1405.4537 (2014)
Chen, K.T.: A faithful representation of paths by noncommutative formal power series. Trans. AMS 89(2), 395–407 (1958)
Levin, D., Lyons, T., Ni, H.: Learning from the past, predicting the statistics for the future, learning an evolving system. arXiv:1309.0260 (2016)
Gregnanin, M., De Smedt, J., et al.: Signature-based community detection for time series. In: Cherifi, H., Rocha, L.M., Cherifi, C., Donduran, M. (eds.) Studies in Computational Intelligence, vol. 1142, pp. 146–158. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-53499-7_12
Gregnanin, M., De Smedt, J., et al.: Stock Price Time Series Foresting using Dynamic Graph Neural Networks and Attention Mechanism in Recurrent Neural Networks. In: MIDAS - ECML-PKDD (2023, to appear)
Kharazian, Z., Lindgren, T., et al.: SCANIA component X dataset: a real-world multivariate time series dataset for predictive maintenance. arXiv:2401.15199 (2024)
Lyons, T., Ni, H.: Expected signature of brownian motion up to the first exit time. Ann. Probab. 43(5), 2729–2762 (2015)
Chevyrev, I., Lyons, T.: Characteristic functions of measures on geometric rough paths. Ann. Probab. 44(6), 4049–4082 (2016)
Levin, D., Lyons, T., Ni, H.: Learning from the past, predicting the statistics for the future, learning an evolving system. arXiv:1309.0260 (2013)
Chevyrev, I., Kormilitzin, A.: A primer on the signature method in machine learning. arXiv preprint arXiv:1603.03788 (2016)
Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch geometric. In: ICLR Workshop on Representation Learning (2019)
Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 (2018)
Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. J. Roy. Stat. Soc. Ser. B 61(3), 611–622 (1999)
Time Series to Visibility Graphs (ts2vg) Python Packages. https://cbergillos.com/ts2vg
Lacasa, L., Nicosia, V., Latora, V.: Network structure of multivariate time series. Sci. Rep. 5, 15508 (2015)
Metta, C., Fantozzi, M., et al.: Increasing biases can be more efficient than increasing weights. In: IEEE/CVF Winter Conference on Applications of Computer Vision WACV (2024)
Di Cecco, A., Metta, C., Fantozzi, M., Morandin, F., Parton, M.: GloNets: globally connected neural networks. In: Piatkowski, N., et al. (eds.) IDA 2024. LNCS, vol. 14641, pp. xx–yy. Springer, Cham (2024)
Freitas Silva, V., Eduarda Silva, M., et al.: MHVG2MTS: multilayer horizontal visibility graphs for multivariate time series. arXiv:2301.02333 (2023)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Parton, M., Fois, A., Vegliò, M., Metta, C., Gregnanin, M. (2024). Predicting the Failure of Component X in the Scania Dataset with Graph Neural Networks. In: Miliou, I., Piatkowski, N., Papapetrou, P. (eds) Advances in Intelligent Data Analysis XXII. IDA 2024. Lecture Notes in Computer Science, vol 14642. Springer, Cham. https://doi.org/10.1007/978-3-031-58553-1_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-58553-1_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-58555-5
Online ISBN: 978-3-031-58553-1
eBook Packages: Computer ScienceComputer Science (R0)