[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Remark on Concept Drift for Dependent Data

  • Conference paper
  • First Online:
Advances in Intelligent Data Analysis XXII (IDA 2024)

Abstract

Concept drift, i.e., the change of the data generating distribution, can render machine learning models inaccurate. Several works address the phenomenon of concept drift in the streaming context usually assuming that consecutive data points are independent of each other. To generalize to dependent data, many authors link the notion of concept drift to time series. In this work, we show that the temporal dependencies are strongly influencing the sampling process. Thus, the used definitions need major modifications. In particular, we show that the notion of stationarity is not suited for this setup and discuss an alternative we refer to as consistency. We demonstrate that consistency better describes the observable learning behavior in numerical experiments.

Funding in the frame of the ERC Synergy Grant “Water-Futures” No. 951424 is gratefully acknowledged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 49.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The experimental code as well as all datasets can be found at https://github.com/FabianHinder/Remark-on-Dependent-Drift.

  2. 2.

    Autoregressive models based on Ridge and k-NN regression are considered but only work for Jump. This also rules out supervised detectors that process their losses.

References

  1. Adams, T.M., Nobel, A.B.: Uniform convergence of vapnik-chervonenkis classes under ergodic sampling. Ann. Probab. 38(4), 1345–1367 (2010)

    Article  MathSciNet  Google Scholar 

  2. Agarwal, A., Duchi, J.C.: The generalization ability of online algorithms for dependent data. IEEE Trans. Inf. Theory 59(1), 573–587 (2012)

    Article  MathSciNet  Google Scholar 

  3. Aminikhanghahi, S., Cook, D.J.: A survey of methods for time series change point detection. Knowl. Inf. Syst. 51(2), 339–367 (2017)

    Article  Google Scholar 

  4. Borodin, A.N.: Stochastic Processes. Springer (2017). https://doi.org/10.1007/978-3-319-62310-8

  5. Dickey, D., Fuller, W.: Distribution of the estimators for autoregressive time series with a unit root. JASA. J. Am. Stat. Assoc. 74, 427–431 (1979)

    MathSciNet  Google Scholar 

  6. Ditzler, G., Roveri, M., Alippi, C., Polikar, R.: Learning in nonstationary environments: a survey. IEEE Comp. Int. Mag. 10(4), 12–25 (2015)

    Article  Google Scholar 

  7. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.J.: A kernel method for the two-sample-problem. In: NIPS, pp. 513–520 (2006)

    Google Scholar 

  8. Hanneke, S., Yang, L.: Statistical learning under nonstationary mixing processes. In: The 22nd International Conference on Artificial Intelligence and Statistics, pp. 1678–1686. PMLR (2019)

    Google Scholar 

  9. Harchaoui, Z., Cappé, O.: Retrospective mutiple change-point estimation with kernels. In: 2007 IEEE/SP 14th Workshop on Statistical Signal Processing, pp. 768–772. IEEE (2007)

    Google Scholar 

  10. Harchaoui, Z., Moulines, E., Bach, F.: Kernel change-point analysis. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) NIPS, vol. 21 (2008)

    Google Scholar 

  11. Hinder, F., Artelt, A., Hammer, B.: Towards non-parametric drift detection via dynamic adapting window independence drift detection (DAWIDD). In: International Conference on Machine Learning, pp. 4249–4259. PMLR (2020)

    Google Scholar 

  12. Hinder, F., Vaquet, V., Brinkrolf, J., Hammer, B.: On the change of decision boundary and loss in learning with concept drift. In: Crémilleux, B., Hess, S., Nijssen, S. (eds) International Symposium on Intelligent Data Analysis, pp. 182–194. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30047-9_15

  13. Hinder, F., Vaquet, V., Brinkrolf, J., Hammer, B.: On the hardness and necessity of supervised concept drift detection. In: 2th International Conference on Pattern Recognition Applications and Methods (2023)

    Google Scholar 

  14. Hinder, F., Vaquet, V., Hammer, B.: Suitability of different metric choices for concept drift detection. In: Bouadi, T., Fromont, E., Hüllermeier, E. (eds.) IDA 2022. LNCS, vol. 13205, pp. 157–170. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-01333-1_13

    Chapter  Google Scholar 

  15. Hinder, F., Vaquet, V., Hammer, B.: One or two things we know about concept drift – a survey on monitoring evolving environments. arXiv preprint arXiv:2310.15826 (2023)

  16. Hinder, F., Vaquet, V., Hammer, B.: A remark on concept drift for dependent data. arXiv preprint arXiv:2312.10212 (2023)

  17. Kontorovich, L.: Measure Concentration of Strongly Mixing Processes with Applications. Carnegie Mellon University (2007)

    Google Scholar 

  18. Krengel, U.: On the speed of convergence in the ergodic theorem. Monatshefte für Mathematik 86(1), 3–6 (1978)

    Article  MathSciNet  Google Scholar 

  19. Kwiatkowski, D., Phillips, P.C., Schmidt, P., Shin, Y.: Testing the null hypothesis of stationarity against the alternative of a unit root: how sure are we that economic time series have a unit root? J. Econometrics 54(1–3), 159–178 (1992)

    Article  Google Scholar 

  20. Lim, B., Zohren, S.: Time-series forecasting with deep learning: a survey. Phil. Trans. R. Soc. A 379(2194), 20200209 (2021)

    Article  MathSciNet  Google Scholar 

  21. Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., Zhang, G.: Learning under concept drift: a review. IEEE Trans. Knowl. Data Eng. 31(12), 2346–2363 (2018)

    Google Scholar 

  22. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press (2014)

    Google Scholar 

  23. Truong, C., Oudre, L., Vayatis, N.: Selective review of offline change point detection methods. Signal Process. 167, 107299 (2020)

    Article  Google Scholar 

  24. Yu, B.: Rates of convergence for empirical processes of stationary mixing sequences. Ann. Probab. 22(1), 94–116 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Hinder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hinder, F., Vaquet, V., Hammer, B. (2024). A Remark on Concept Drift for Dependent Data. In: Miliou, I., Piatkowski, N., Papapetrou, P. (eds) Advances in Intelligent Data Analysis XXII. IDA 2024. Lecture Notes in Computer Science, vol 14641. Springer, Cham. https://doi.org/10.1007/978-3-031-58547-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-58547-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-58546-3

  • Online ISBN: 978-3-031-58547-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics