Abstract
Efficiently predicting properties of porous crystalline materials has great potential to accelerate the high throughput screening process for developing new materials, as simulations carried out using first principles models are often computationally expensive. To effectively make use of Deep Learning methods to model these materials, we need to utilize the symmetries present in crystals, which are defined by their space group. Existing methods for crystal property prediction either have symmetry constraints that are too restrictive or only incorporate symmetries between unit cells. In addition, these models do not explicitly model the porous structure of the crystal. In this paper, we develop a model which incorporates the symmetries of the unit cell of a crystal in its architecture and explicitly models the porous structure. We evaluate our model by predicting the heat of adsorption of CO\(_2\) for different configurations of the mordenite and ZSM-5 zeolites. Our results confirm that our method performs better than existing methods for crystal property prediction and that the inclusion of pores results in a more efficient model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baerlocher, C., McCusker, L.B., Olson, D.H.: Atlas of zeolite framework types. Elsevier (2007)
Chen, C., Ye, W., Zuo, Y., Zheng, C., Ong, S.P.: Graph networks as a universal machine learning framework for molecules and crystals. Chem. Mater. 31(9), 3564–3572 (2019)
Choi, H.J., Jo, D., Hong, S.B.: Effect of framework si/al ratio on the adsorption mechanism of co2 on small-pore zeolites: Ii. merlinoite. Chem. Eng. J. 446, 137100 (2022)
Choudhary, K., DeCost, B.: Atomistic line graph neural network for improved materials property predictions. npj Computational Materials 7(1), 185 (2021)
Choudhary, K., et al.: Recent advances and applications of deep learning methods in materials science. npj Comput. Mater. 8(1), 59 (2022)
Dubbeldam, D., Calero, S., Ellis, D.E., Snurr, R.Q.: Raspa: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol. Simul. 42(2), 81–101 (2016)
Dubbeldam, D., Calero, S., Vlugt, T.J.: iraspa: Gpu-accelerated visualization software for materials scientists. Mol. Simul. 44(8), 653–676 (2018)
Fey, M.: PyTorch Scatter (2023)
Garcia-Sanchez, A., Ania, C.O., Parra, J.B., Dubbeldam, D., Vlugt, T.J., Krishna, R., Calero, S.: Transferable force field for carbon dioxide adsorption in zeolites. J. Phys. Chem. C 113(20), 8814–8820 (2009)
Gasteiger, J., Giri, S., Margraf, J.T., Günnemann, S.: Fast and uncertainty-aware directional message passing for non-equilibrium molecules. In: Machine Learning for Molecules Workshop, NeurIPS (2020)
Gasteiger, J., Groß, J., Günnemann, S.: Directional message passing for molecular graphs. In: International Conference on Learning Representations (2020)
Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: International Conference on Machine Learning, pp. 1263–1272. PMLR (2017)
Harris, J.G., Yung, K.H.: Carbon dioxide’s liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model. J. Phys. Chem. 99(31), 12021–12024 (1995)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Jablonka, K.M., Ongari, D., Moosavi, S.M., Smit, B.: Big-data science in porous materials: materials genomics and machine learning. Chem. Rev. 120(16), 8066–8129 (2020)
Kaba, S.O., Ravanbakhsh, S.: Equivariant networks for crystal structures. In: Advances in Neural Information Processing Systems (2022)
Khaleque, A., et al.: Zeolite synthesis from low-cost materials and environmental applications: a review. Environ. Adv. 2, 100019 (2020)
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)
Moradi, H., Azizpour, H., Bahmanyar, H., Rezamandi, N., Zahedi, P.: Effect of si/al ratio in the faujasite structure on adsorption of methane and nitrogen: a molecular dynamics study. Chem. Eng. Technol. 44(7), 1221–1226 (2021)
Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in Neural Information Processing Systems 32 (2019)
Ravanbakhsh, S., Schneider, J., Poczos, B.: Equivariance through parameter-sharing. In: International Conference on Machine Learning, pp. 2892–2901. PMLR (2017)
Reiser, P., Neubert, M., Eberhard, A., Torresi, L., Zhou, C., Shao, C., Metni, H., van Hoesel, C., Schopmans, H., Sommer, T., et al.: Graph neural networks for materials science and chemistry. Commun. Mater. 3(1), 93 (2022)
Romero-Marimon, P., Gutiérrez-Sevillano, J.J., Calero, S.: Adsorption of carbon dioxide in non-löwenstein zeolites. Chemistry of Materials (2023)
Schütt, K., Kindermans, P.J., Sauceda Felix, H.E., Chmiela, S., Tkatchenko, A., Müller, K.R.: Schnet: A continuous-filter convolutional neural network for modeling quantum interactions. Advances in Neural Information Processing Systems 30 (2017)
Shakerinava, M.: AutoEquiv (2 2021), www.github.com/mshakerinava/AutoEquiv
Sneddon, G., Greenaway, A., Yiu, H.H.: The potential applications of nanoporous materials for the adsorption, separation, and catalytic conversion of carbon dioxide. Adv. Energy Mater. 4(10), 1301873 (2014)
Stein, H.S., Gregoire, J.M.: Progress and prospects for accelerating materials science with automated and autonomous workflows. Chem. Sci. 10(42), 9640–9649 (2019)
Wang, R., Zhong, Y., Bi, L., Yang, M., Xu, D.: Accelerating discovery of metal-organic frameworks for methane adsorption with hierarchical screening and deep learning. ACS Applied Materials & Interfaces 12(47), 52797–52807 (2020)
Wang, R., Zou, Y., Zhang, C., Wang, X., Yang, M., Xu, D.: Combining crystal graphs and domain knowledge in machine learning to predict metal-organic frameworks performance in methane adsorption. Microporous Mesoporous Mater. 331, 111666 (2022)
Widom, B.: Some topics in the theory of fluids. J. Chem. Phys. 39(11), 2808–2812 (1963)
Xie, T., Grossman, J.C.: Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys. Rev. Lett. 120(14), 145301 (2018)
Yan, K., Liu, Y., Lin, Y., Ji, S.: Periodic graph transformers for crystal material property prediction. Adv. Neural. Inf. Process. Syst. 35, 15066–15080 (2022)
Yang, C.T., Janda, A., Bell, A.T., Lin, L.C.: Atomistic investigations of the effects of si/al ratio and al distribution on the adsorption selectivity of n-alkanes in brønsted-acid zeolites. The Journal of Physical Chemistry C 122(17), 9397–9410 (2018)
Zhang, C., Xie, Y., Xie, C., Dong, H., Zhang, L., Lin, J.: Accelerated discovery of porous materials for carbon capture by machine learning: A review. MRS Bull. 47(4), 432–439 (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Petković, M., Romero Marimon, P., Menkovski, V., Calero, S. (2024). Equivariant Parameter Sharing for Porous Crystalline Materials. In: Miliou, I., Piatkowski, N., Papapetrou, P. (eds) Advances in Intelligent Data Analysis XXII. IDA 2024. Lecture Notes in Computer Science, vol 14641. Springer, Cham. https://doi.org/10.1007/978-3-031-58547-0_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-58547-0_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-58546-3
Online ISBN: 978-3-031-58547-0
eBook Packages: Computer ScienceComputer Science (R0)