[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Equivariant Parameter Sharing for Porous Crystalline Materials

  • Conference paper
  • First Online:
Advances in Intelligent Data Analysis XXII (IDA 2024)

Abstract

Efficiently predicting properties of porous crystalline materials has great potential to accelerate the high throughput screening process for developing new materials, as simulations carried out using first principles models are often computationally expensive. To effectively make use of Deep Learning methods to model these materials, we need to utilize the symmetries present in crystals, which are defined by their space group. Existing methods for crystal property prediction either have symmetry constraints that are too restrictive or only incorporate symmetries between unit cells. In addition, these models do not explicitly model the porous structure of the crystal. In this paper, we develop a model which incorporates the symmetries of the unit cell of a crystal in its architecture and explicitly models the porous structure. We evaluate our model by predicting the heat of adsorption of CO\(_2\) for different configurations of the mordenite and ZSM-5 zeolites. Our results confirm that our method performs better than existing methods for crystal property prediction and that the inclusion of pores results in a more efficient model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 49.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baerlocher, C., McCusker, L.B., Olson, D.H.: Atlas of zeolite framework types. Elsevier (2007)

    Google Scholar 

  2. Chen, C., Ye, W., Zuo, Y., Zheng, C., Ong, S.P.: Graph networks as a universal machine learning framework for molecules and crystals. Chem. Mater. 31(9), 3564–3572 (2019)

    Article  Google Scholar 

  3. Choi, H.J., Jo, D., Hong, S.B.: Effect of framework si/al ratio on the adsorption mechanism of co2 on small-pore zeolites: Ii. merlinoite. Chem. Eng. J. 446, 137100 (2022)

    Google Scholar 

  4. Choudhary, K., DeCost, B.: Atomistic line graph neural network for improved materials property predictions. npj Computational Materials 7(1), 185 (2021)

    Google Scholar 

  5. Choudhary, K., et al.: Recent advances and applications of deep learning methods in materials science. npj Comput. Mater. 8(1), 59 (2022)

    Google Scholar 

  6. Dubbeldam, D., Calero, S., Ellis, D.E., Snurr, R.Q.: Raspa: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol. Simul. 42(2), 81–101 (2016)

    Article  Google Scholar 

  7. Dubbeldam, D., Calero, S., Vlugt, T.J.: iraspa: Gpu-accelerated visualization software for materials scientists. Mol. Simul. 44(8), 653–676 (2018)

    Article  Google Scholar 

  8. Fey, M.: PyTorch Scatter (2023)

    Google Scholar 

  9. Garcia-Sanchez, A., Ania, C.O., Parra, J.B., Dubbeldam, D., Vlugt, T.J., Krishna, R., Calero, S.: Transferable force field for carbon dioxide adsorption in zeolites. J. Phys. Chem. C 113(20), 8814–8820 (2009)

    Article  Google Scholar 

  10. Gasteiger, J., Giri, S., Margraf, J.T., Günnemann, S.: Fast and uncertainty-aware directional message passing for non-equilibrium molecules. In: Machine Learning for Molecules Workshop, NeurIPS (2020)

    Google Scholar 

  11. Gasteiger, J., Groß, J., Günnemann, S.: Directional message passing for molecular graphs. In: International Conference on Learning Representations (2020)

    Google Scholar 

  12. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: International Conference on Machine Learning, pp. 1263–1272. PMLR (2017)

    Google Scholar 

  13. Harris, J.G., Yung, K.H.: Carbon dioxide’s liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model. J. Phys. Chem. 99(31), 12021–12024 (1995)

    Article  Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  15. Jablonka, K.M., Ongari, D., Moosavi, S.M., Smit, B.: Big-data science in porous materials: materials genomics and machine learning. Chem. Rev. 120(16), 8066–8129 (2020)

    Article  Google Scholar 

  16. Kaba, S.O., Ravanbakhsh, S.: Equivariant networks for crystal structures. In: Advances in Neural Information Processing Systems (2022)

    Google Scholar 

  17. Khaleque, A., et al.: Zeolite synthesis from low-cost materials and environmental applications: a review. Environ. Adv. 2, 100019 (2020)

    Article  Google Scholar 

  18. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  19. Moradi, H., Azizpour, H., Bahmanyar, H., Rezamandi, N., Zahedi, P.: Effect of si/al ratio in the faujasite structure on adsorption of methane and nitrogen: a molecular dynamics study. Chem. Eng. Technol. 44(7), 1221–1226 (2021)

    Article  Google Scholar 

  20. Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in Neural Information Processing Systems 32 (2019)

    Google Scholar 

  21. Ravanbakhsh, S., Schneider, J., Poczos, B.: Equivariance through parameter-sharing. In: International Conference on Machine Learning, pp. 2892–2901. PMLR (2017)

    Google Scholar 

  22. Reiser, P., Neubert, M., Eberhard, A., Torresi, L., Zhou, C., Shao, C., Metni, H., van Hoesel, C., Schopmans, H., Sommer, T., et al.: Graph neural networks for materials science and chemistry. Commun. Mater. 3(1), 93 (2022)

    Article  Google Scholar 

  23. Romero-Marimon, P., Gutiérrez-Sevillano, J.J., Calero, S.: Adsorption of carbon dioxide in non-löwenstein zeolites. Chemistry of Materials (2023)

    Google Scholar 

  24. Schütt, K., Kindermans, P.J., Sauceda Felix, H.E., Chmiela, S., Tkatchenko, A., Müller, K.R.: Schnet: A continuous-filter convolutional neural network for modeling quantum interactions. Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  25. Shakerinava, M.: AutoEquiv (2 2021), www.github.com/mshakerinava/AutoEquiv

  26. Sneddon, G., Greenaway, A., Yiu, H.H.: The potential applications of nanoporous materials for the adsorption, separation, and catalytic conversion of carbon dioxide. Adv. Energy Mater. 4(10), 1301873 (2014)

    Article  Google Scholar 

  27. Stein, H.S., Gregoire, J.M.: Progress and prospects for accelerating materials science with automated and autonomous workflows. Chem. Sci. 10(42), 9640–9649 (2019)

    Article  Google Scholar 

  28. Wang, R., Zhong, Y., Bi, L., Yang, M., Xu, D.: Accelerating discovery of metal-organic frameworks for methane adsorption with hierarchical screening and deep learning. ACS Applied Materials & Interfaces 12(47), 52797–52807 (2020)

    Article  Google Scholar 

  29. Wang, R., Zou, Y., Zhang, C., Wang, X., Yang, M., Xu, D.: Combining crystal graphs and domain knowledge in machine learning to predict metal-organic frameworks performance in methane adsorption. Microporous Mesoporous Mater. 331, 111666 (2022)

    Article  Google Scholar 

  30. Widom, B.: Some topics in the theory of fluids. J. Chem. Phys. 39(11), 2808–2812 (1963)

    Article  Google Scholar 

  31. Xie, T., Grossman, J.C.: Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys. Rev. Lett. 120(14), 145301 (2018)

    Article  Google Scholar 

  32. Yan, K., Liu, Y., Lin, Y., Ji, S.: Periodic graph transformers for crystal material property prediction. Adv. Neural. Inf. Process. Syst. 35, 15066–15080 (2022)

    Google Scholar 

  33. Yang, C.T., Janda, A., Bell, A.T., Lin, L.C.: Atomistic investigations of the effects of si/al ratio and al distribution on the adsorption selectivity of n-alkanes in brønsted-acid zeolites. The Journal of Physical Chemistry C 122(17), 9397–9410 (2018)

    Article  Google Scholar 

  34. Zhang, C., Xie, Y., Xie, C., Dong, H., Zhang, L., Lin, J.: Accelerated discovery of porous materials for carbon capture by machine learning: A review. MRS Bull. 47(4), 432–439 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Petković .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Petković, M., Romero Marimon, P., Menkovski, V., Calero, S. (2024). Equivariant Parameter Sharing for Porous Crystalline Materials. In: Miliou, I., Piatkowski, N., Papapetrou, P. (eds) Advances in Intelligent Data Analysis XXII. IDA 2024. Lecture Notes in Computer Science, vol 14641. Springer, Cham. https://doi.org/10.1007/978-3-031-58547-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-58547-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-58546-3

  • Online ISBN: 978-3-031-58547-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics