[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Maximum Alternating Balanced Cycle Decomposition and Applications in Sorting by Intergenic Operations Problems

  • Conference paper
  • First Online:
Comparative Genomics (RECOMB-CG 2024)

Abstract

In the literature on genome rearrangement, several approaches use different structures to improve the results of genome rearrangement problems. In particular, graphs are structures widely used for the purpose of representing information retrieved from genomes. The breakpoint graph is a useful tool in this area because it allows representing in the same structure the gene orders of two genomes being compared. The maximum cycle decomposition of this graph brings immediate gain for deriving lower bounds for various genome rearrangement problems. This paper introduces a generalization of the Maximum Alternating Cycle Decomposition problem (MAX-ACD), called the Maximum Alternating Balanced Cycle Decomposition problem (MAX-ABCD). The MAX-ACD problem is closely related to the Sorting by Reversals problem and is a relevant topic of investigation in mathematics. The MAX-ABCD problem has applications in the Sorting by Intergenic Reversals problem, which is a problem that takes into account both the gene order and the information present in the intergenic regions. We present an algorithm with a constant approximation factor for the MAX-ABCD problem. Furthermore, we design an improved algorithm for the Sorting by Intergenic Operations of Reversal and Indel problem that guarantees an approximation factor of \(\frac{3}{2}\) considering a scenario where the orientation of the genes is known. For the scenario where the orientation of the genes is unknown and based on an algorithm for the MAX-ABCD problem, we develop approximation algorithms for the Sorting by Intergenic Reversals and Sorting by Intergenic Operations of Reversal and Indel problems with an approximation factor of 2k, where \(k=\frac{31}{21}+\epsilon \).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 39.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 49.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alexandrino, A.O., Brito, K.L., Oliveira, A.R., Dias, U., Dias, Z.: Reversal distance on genomes with different gene content and intergenic regions information. In: Martín-Vide, C., Vega-Rodríguez, M.A., Wheeler, T. (eds.) AlCoB 2021. LNCS, vol. 12715, pp. 121–133. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-74432-8_9

    Chapter  Google Scholar 

  2. Alexandrino, A.O., Brito, K.L., Oliveira, A.R., Dias, U., Dias, Z.: Reversal and indel distance with intergenic region information. IEEE/ACM Transactions on Computational Biology and Bioinformatics, pp. 1–13 (2022)

    Google Scholar 

  3. Alexandrino, A.O., Oliveira, A.R., Dias, U., Dias, Z.: Incorporating intergenic regions into reversal and transposition distances with indels. J. Bioinform. Comput. Biol. 19(06), 2140011 (2021)

    Article  Google Scholar 

  4. Bafna, V., Pevzner, P.A.: Genome rearrangements and sorting by reversals. SIAM J. Comput. 25(2), 272–289 (1996)

    Article  MathSciNet  Google Scholar 

  5. Berman, P., Fürer, M.: Approximating maximum independent set in bounded degree graphs. In: SODA’94: Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 365–371. Society for Industrial and Applied Mathematics (1994)

    Google Scholar 

  6. Berman, P., Hannenhalli, S., Karpinski, M.: 1.375-approximation algorithm for sorting by reversals. In: Möhring, R., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 200–210. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45749-6_21

    Chapter  Google Scholar 

  7. Berman, P., Karpinski, M.: On some tighter inapproximability results (extended abstract). In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 200–209. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6_17

    Chapter  Google Scholar 

  8. Biller, P., Knibbe, C., Beslon, G., Tannier, E.: Comparative genomics on artificial life. In: Beckmann, A., Bienvenu, L., Jonoska, N. (eds.) CiE 2016. LNCS, vol. 9709, pp. 35–44. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40189-8_4

    Chapter  Google Scholar 

  9. Brito, K.L., Jean, G., Fertin, G., Oliveira, A.R., Dias, U., Dias, Z.: Sorting by genome rearrangements on both gene order and intergenic sizes. J. Comput. Biol. 27(2), 156–174 (2020)

    Article  MathSciNet  Google Scholar 

  10. Bulteau, L., Fertin, G., Komusiewicz, C.: (Prefix) Reversal distance for (signed) strings with few blocks or small alphabets. J. Discret. Algorithms 37, 44–55 (2016)

    Article  MathSciNet  Google Scholar 

  11. Caprara, A.: On the tightness of the alternating-cycle lower bound for sorting by reversals. J. Comb. Optim. 3(2), 149–182 (1999)

    Article  MathSciNet  Google Scholar 

  12. Caprara, A.: Sorting permutations by reversals and Eulerian cycle decompositions. SIAM J. Discret. Math. 12(1), 91–110 (1999)

    Article  MathSciNet  Google Scholar 

  13. Caprara, A., Rizzi, R.: Improved approximation for breakpoint graph decomposition and sorting by reversals. J. Comb. Optim. 6(2), 157–182 (2002)

    Article  MathSciNet  Google Scholar 

  14. Chen, X.: On sorting unsigned permutations by double-cut-and-joins. J. Comb. Optim. 25(3), 339–351 (2013)

    Article  MathSciNet  Google Scholar 

  15. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA (1979)

    Google Scholar 

  16. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals. J. ACM 46(1), 1–27 (1999)

    Article  MathSciNet  Google Scholar 

  17. Hurkens, C.A.J., Schrijver, A.: On the size of systems of sets every t of which have an SDR, with an application to the worst-case ratio of heuristics for packing problems. SIAM J. Discret. Math. 2(1), 68–72 (1989)

    Article  MathSciNet  Google Scholar 

  18. Karp, R.M.: Reducibility among combinatorial problems. In: Jünger, M., et al. (eds.) 50 Years of Integer Programming 1958-2008, pp. 219–241. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-540-68279-0_8

    Chapter  Google Scholar 

  19. Lin, G., Jiang, T.: A further improved approximation algorithm for breakpoint graph decomposition. J. Comb. Optim. 8(2), 183–194 (2004)

    Article  MathSciNet  Google Scholar 

  20. Oliveira, A.R., et al.: Sorting signed permutations by intergenic reversals. IEEE/ACM Trans. Comput. Biol. Bioinform. 18(6), 2870–2876 (2021)

    Article  Google Scholar 

  21. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. J. Comput. Syst. Sci. 43, 425–440 (1991)

    Article  MathSciNet  Google Scholar 

  22. Pinheiro, P.O., Alexandrino, A.O., Oliveira, A.R., de Souza, C.C., Dias, Z.: Heuristics for breakpoint graph decomposition with applications in genome rearrangement problems. In: BSB 2020. LNCS, vol. 12558, pp. 129–140. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65775-8_12

    Chapter  Google Scholar 

  23. Rahman, A., Shatabda, S., Hasan, M.: An approximation algorithm for sorting by reversals and transpositions. J. Discret. Algorithms 6(3), 449–457 (2008)

    Article  MathSciNet  Google Scholar 

  24. Swenson, K.M., Lin, Yu., Rajan, V., Moret, B.M.E.: Hurdles hardly have to be heeded. In: Nelson, C.E., Vialette, S. (eds.) RECOMB-CG 2008. LNCS, vol. 5267, pp. 241–251. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87989-3_18

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 and the São Paulo Research Foundation, FAPESP (grants 2013/08293-7 and 2021/13824-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Siqueira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brito, K.L., Alexandrino, A.O., Siqueira, G., Oliveira, A.R., Dias, U., Dias, Z. (2024). Maximum Alternating Balanced Cycle Decomposition and Applications in Sorting by Intergenic Operations Problems. In: Scornavacca, C., Hernández-Rosales, M. (eds) Comparative Genomics. RECOMB-CG 2024. Lecture Notes in Computer Science(), vol 14616. Springer, Cham. https://doi.org/10.1007/978-3-031-58072-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-58072-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-58071-0

  • Online ISBN: 978-3-031-58072-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics