Abstract
Discrete tomography deals with the reconstruction of images from a (usually small) set of X-ray projections. This is achieved by modeling the tomographic problem as a linear system of equations and then applying a suitable discrete reconstruction algorithm based on iterations. In this paper we adopt the well-known grid model and prove some geometric properties of integer solutions consisting of \(p\ge 2\) gray levels. In particular, we show that all gray-scale solutions having the same two-norm belong to a same hypersphere, centered at the uniform image related to the data and having radius ranging in an interval whose bounds are explicitly computed.
Moving from a uniqueness theorem for gray-scale images, we compute special sets of directions that guarantee uniqueness of reconstruction and exploit them as the input of the Conjugate Gradient Least Squares algorithm. Then we apply an integer rounding to the resulting output and, basing on previously described geometric parameters, we test the quality of the obtained reconstructions for an increasing number of iterations, which leads to a progressive improvement of the percentage of correctly reconstructed pixels, until perfect reconstruction is achieved. Differently, using sets of directions which are classically employed, but far from being sets of uniqueness, only partial reconstructions are obtained.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Batenburg, K., Fortes, W., Hajdu, L., Tijdeman, R.: Bounds on the quality of reconstructed images in binary tomography. Disc. Appl. Math. 161(15), 2236–2251 (2013). https://doi.org/10.1016/j.dam.2012.11.010
Brunetti, S., Dulio, P., Peri, C.: Characterization of (-1,0,+1) valued functions in discrete tomography under sets of four directions. In: Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 394–405. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19867-0_33
Brunetti, S., Dulio, P., Peri, C.: Discrete tomography determination of bounded lattice sets from four X-rays. Disc. Appl. Math. 161(15), 2281–2292 (2013). https://doi.org/10.1016/j.dam.2012.09.010
Brunetti, S., Dulio, P., Peri, C.: Discrete tomography determination of bounded sets in \(\mathbb{Z} ^n\). Disc. Appl. Math. 183, 20–30 (2015). https://doi.org/10.1016/j.dam.2014.01.016
Brunetti, S., Dulio, P., Peri, C.: Uniqueness results for grey scale digital images. Fund. Inf. 172(2), 221–238 (2020). https://doi.org/10.3233/fi-2020-1902
Dalen, B.V., Hajdu, L., Tijdeman, R.: Bounds for discrete tomography solutions. Indag. Math. 24(2), 391–402 (2013). https://doi.org/10.1016/j.indag.2012.12.005
Dulio, P., Frosini, A., Pagani, S.: A geometrical characterization of regions of uniqueness and applications to discrete tomography. Inverse Prob. 31(12), 125011 (2015). https://doi.org/10.1088/0266-5611/31/12/125011
Dulio, P., Pagani, S.: A rounding theorem for unique binary tomographic reconstruction. Disc. Appl. Math. 268, 54–69 (2019). https://doi.org/10.1016/j.dam.2019.05.005
Gardner, R., Gritzmann, P.: Discrete tomography: determination of finite sets by X-rays. Trans. Am. Math. Soc. 349(6), 2271–2295 (1997). https://doi.org/10.1090/S0002-9947-97-01741-8
Guédon, J.P., Normand, N.: The Mojette transform: the first ten years. In: Andres, E., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 79–91. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31965-8_8
Hajdu, L., Tijdeman, R.: Algebraic aspects of discrete tomography. J. Reine Angew. Math. 534, 119–128 (2001). https://doi.org/10.1515/crll.2001.037
Katz, M.: Questions of Uniqueness and Resolution in Reconstruction from Projections/Myron Bernard Katz. Springer, New York (1978). https://doi.org/10.1007/978-3-642-45507-0
Normand, N., Kingston, A., Évenou, P.: A geometry driven reconstruction algorithm for the Mojette transform. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 122–133. Springer, Heidelberg (2006). https://doi.org/10.1007/11907350_11
Van Aert, S., Batenburg, K., Rossell, M., Erni, R., Van Tendeloo, G.: Three-dimensional atomic imaging of crystalline nanoparticles. Nature 470(7334), 374–377 (2011). https://doi.org/10.1038/nature09741
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ascolese, M., Dulio, P., Pagani, S.M.C. (2024). Some Geometric and Tomographic Results on Gray-Scale Images. In: Brunetti, S., Frosini, A., Rinaldi, S. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2024. Lecture Notes in Computer Science, vol 14605. Springer, Cham. https://doi.org/10.1007/978-3-031-57793-2_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-57793-2_11
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-57792-5
Online ISBN: 978-3-031-57793-2
eBook Packages: Computer ScienceComputer Science (R0)