Abstract
This paper studies the hardness of decision Module Learning with Errors (\(\textsf{MLWE}\)) under linear leakage, which has been used as a foundation to derive more efficient lattice-based zero-knowledge proofs in a recent paradigm of Lyubashevsky, Nguyen, and Seiler (PKC 21). Unlike in the plain \(\textsf{LWE}\) setting, it was unknown whether this problem remains provably hard in the module/ring setting.
This work shows a reduction from the standard search \(\textsf{MLWE}\) to decision \(\textsf{MLWE}\) with linear leakage. Thus, the main problem remains hard asymptotically as long as the non-leakage version of \(\textsf{MLWE}\) is hard. Additionally, we also refine the paradigm of Lyubashevsky, Nguyen, and Seiler (PKC 21) by showing a more fine-grained tradeoff between efficiency and leakage. This can lead to further optimizations of lattice proofs under the paradigm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In fact, the work [36] only needs a slightly weaker version known as extended (R)LWE.
- 2.
In the very recent work [33], while the full-splitting structure is not required to prove the \(\ell _2\) norm, it is still necessary to prove the \(\ell _\infty \) norm or the knowledge of the component-wise product of two vectors.
- 3.
In fact, our leakage class in the main body is slightly more general, i.e., the leakage function can include slight multiplicative shifts. Nevertheless, this simplified version is sufficient to demonstrate our core ideas in the introduction.
- 4.
For such function \(\mathcal {M}(\boldsymbol{v},\boldsymbol{z})=\exp \left( \frac{3\langle \boldsymbol{v},\boldsymbol{z}\rangle }{\alpha ^2}\right) \), the condition \(\mathcal {M}(\boldsymbol{v},\boldsymbol{z})\in [1,M]\) implies \(\langle \boldsymbol{z},\boldsymbol{v}\rangle \in [0,(\alpha ^2\cdot \ln M)/3]\).
- 5.
Of course, the number of \(\hat{k}\) will affect the proof size of opening proof. Thus, we try to set it as small as possible.
References
Abla, P., Liu, F.-H., Wang, H., Wang, Z.: Ring-based identity based encryption – asymptotically shorter MPK and tighter security. In: Nissim, K., Waters, B. (eds.) TCC 2021, Part III. LNCS, vol. 13044, pp. 157–187. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90456-2_6
Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_28
Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 98–115. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_6
Alperin-Sheriff, J., Peikert, C.: Circular and KDM security for identity-based encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 334–352. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8_20
Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding, revisited - new reduction, properties and applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 57–74. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_4
Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-secure encryption based on hard learning problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_35
Attema, T., Lyubashevsky, V., Seiler, G.: Practical product proofs for lattice commitments. In: Micciancio and Ristenpart [40], pp. 470–499 (2020). https://doi.org/10.1007/978-3-030-56880-1_17
Banaszczyk, W.: New bounds in some transference theorems in the geometry of numbers. Math. Ann. 296(1), 625–635 (1993)
Baum, C., Damgård, I., Lyubashevsky, V., Oechsner, S., Peikert, C.: More efficient commitments from structured lattice assumptions. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 368–385. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_20
Boldyreva, A., Micciancio, D. (eds.): CRYPTO 2019, Part I. LNCS, vol. 11692. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-26948-7
Bootle, J., Lyubashevsky, V., Seiler, G.: Algebraic techniques for short(er) exact lattice-based zero-knowledge proofs. In: Boldyreva and Micciancio [10], pp. 176–202 (2019). https://doi.org/10.1007/978-3-030-26948-7_7
Boudgoust, K., Jeudy, C., Roux-Langlois, A., Wen, W.: On the hardness of module-LWE with binary secret. In: Paterson, K.G. (ed.) CT-RSA 2021. LNCS, vol. 12704, pp. 503–526. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75539-3_21
Boudgoust, K., Jeudy, C., Roux-Langlois, A., Wen, W.: On the hardness of module learning with errors with short distributions. Cryptology ePrint Archive, Paper 2022/472 (2022). https://eprint.iacr.org/2022/472
Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_50
Brakerski, Z., Döttling, N.: Lossiness and entropic hardness for ring-LWE. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part I. LNCS, vol. 12550, pp. 1–27. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64375-1_1
Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS 2012, pp. 309–325. ACM (2012)
Cheon, J.H., Takagi, T. (eds.): ASIACRYPT 2016, Part II. LNCS, vol. 10032. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6
Dachman-Soled, D., Ducas, L., Gong, H., Rossi, M.: LWE with side information: attacks and concrete security estimation. In: Micciancio and Ristenpart [40], pp. 329–358 (2020). https://doi.org/10.1007/978-3-030-56880-1_12
del Pino, R., Katsumata, S.: A new framework for more efficient round-optimal lattice-based (partially) blind signature via trapdoor sampling. In: Dodis and Shrimpton [21], pp. 306–336 (2022). https://doi.org/10.1007/978-3-031-15979-4_11
del Pino, R., Lyubashevsky, V., Seiler, G.: Lattice-based group signatures and zero-knowledge proofs of automorphism stability. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 574–591. ACM Press (2018)
Dodis, Y., Shrimpton, T. (eds.): CRYPTO 2022, Part II. LNCS, vol. 13508. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-15979-4
Döttling, N., Kolonelos, D., Lai, R.W.F., Lin, C., Malavolta, G., Rahimi, A.: Efficient laconic cryptography from learning with errors. Cryptology ePrint Archive, Paper 2023/404 (2023). https://eprint.iacr.org/2023/404
Esgin, M.F., Nguyen, N.K., Seiler, G.: Practical exact proofs from lattices: new techniques to exploit fully-splitting rings. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp. 259–288. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_9
Esgin, M.F., Steinfeld, R., Liu, J.K., Liu, D.: Lattice-based zero-knowledge proofs: new techniques for shorter and faster constructions and applications. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 115–146. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_5
Esgin, M.F., Zhao, R.K., Steinfeld, R., Liu, J.K., Liu, D.: MatRiCT: efficient, scalable and post-quantum blockchain confidential transactions protocol. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 567–584. ACM Press (2019)
Gilbert, H. (ed.): EUROCRYPT 2010. LNCS, vol. 6110. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5
Katsumata, S., Yamada, S.: Partitioning via non-linear polynomial functions: more compact IBEs from ideal lattices and bilinear maps. In: Cheon and Takagi [17], pp. 682–712 (2016). https://doi.org/10.1007/978-3-662-53890-6_23
Kim, D., Lee, D., Seo, J., Song, Y.: Toward practical lattice-based proof of knowledge from hint-mlwe. Cryptology ePrint Archive, Paper 2023/623 (2023). https://eprint.iacr.org/2023/623
Langlois, A., Stehle, D.: Worst-case to average-case reductions for module lattices. Des. Codes Cryptogr. (2015)
Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Signature schemes with efficient protocols and dynamic group signatures from lattice assumptions. In: Cheon and Takagi [17], pp. 373–403 (2016). https://doi.org/10.1007/978-3-662-53890-6_13
Liu, F.-H., Wang, Z.: Rounding in the rings. In: Micciancio and Ristenpart [40], pp. 296–326 (2020). https://doi.org/10.1007/978-3-030-56880-1_11
Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_43
Lyubashevsky, V., Nguyen, N.K., Plançon, M.: Lattice-based zero-knowledge proofs and applications: shorter, simpler, and more general. In: Dodis and Shrimpton [21], pp. 71–101 (2022). https://doi.org/10.1007/978-3-031-15979-4_3
Lyubashevsky, V., Nguyen, N.K., Plancon, M., Seiler, G.: Shorter lattice-based group signatures via “Almost Free’’ encryption and other optimizations. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part IV. LNCS, vol. 13093, pp. 218–248. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92068-5_8
Lyubashevsky, V., Nguyen, N.K., Seiler, G.: Practical lattice-based zero-knowledge proofs for integer relations. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020, pp. 1051–1070. ACM Press (2020)
Lyubashevsky, V., Nguyen, N.K., Seiler, G.: Shorter lattice-based zero-knowledge proofs via one-time commitments. In: Garay, J.A. (ed.) PKC 2021, Part I. LNCS, vol. 12710, pp. 215–241. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75245-3_9
Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert [26], pp. 1–23 (2010). https://doi.org/10.1007/978-3-642-13190-5_1
Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 35–54. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_3
Lyubashevsky, V., Seiler, G.: Short, invertible elements in partially splitting cyclotomic rings and applications to lattice-based zero-knowledge proofs. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 204–224. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_8
Micciancio, D., Ristenpart, T. (eds.): CRYPTO 2020, Part II. LNCS, vol. 12171. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-56880-1
O’Neill, A., Peikert, C., Waters, B.: Bi-deniable public-key encryption. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 525–542. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_30
Peikert, C.: A decade of lattice cryptography. Cryptology ePrint Archive, Report 2015/939 (2015). https://eprint.iacr.org/2015/939
Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learning with errors. In: Boldyreva and Micciancio [10], pp. 89–114 (2019). https://doi.org/10.1007/978-3-030-26948-7_4
Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_36
Yamada, S.: Adaptively secure identity-based encryption from lattices with asymptotically shorter public parameters. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 32–62. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_2
Yamada, S.: Asymptotically compact adaptively secure lattice IBEs and verifiable random functions via generalized partitioning techniques. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 161–193. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_6
Acknowledgement
We would like to thank the reviewers of PKC 2024 for their insightful advices. Zhedong Wang is supported by National Natural Science Foundation of China (Grant No. 62202305), Young Elite Scientists Sponsorship Program by China Association for Science and Technology (YESS20220150), Shanghai Pujiang Program under Grant 22PJ1407700, and Shanghai Science and Technology Innovation Action Plan (No. 23511100300). Qiqi Lai is supported by the National Natural Science Foundation of China (Grant No. 62172266). Feng-Hao Liu is supported by the NSF Career Award CNS-2402031.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 International Association for Cryptologic Research
About this paper
Cite this paper
Wang, Z., Lai, Q., Liu, FH. (2024). Ring/Module Learning with Errors Under Linear Leakage – Hardness and Applications. In: Tang, Q., Teague, V. (eds) Public-Key Cryptography – PKC 2024. PKC 2024. Lecture Notes in Computer Science, vol 14602. Springer, Cham. https://doi.org/10.1007/978-3-031-57722-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-57722-2_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-57721-5
Online ISBN: 978-3-031-57722-2
eBook Packages: Computer ScienceComputer Science (R0)