[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Investigation of Graceful Degradation in Boolean Network Robots Subject to Online Adaptation

  • Conference paper
  • First Online:
Artificial Life and Evolutionary Computation (WIVACE 2023)

Abstract

The ability to resist to faults is a desired property in robotic systems. However, it is also hard to obtain, having to modify the behavior to face breakdowns. In this work we investigate the robustness against sensor faults in robots controlled by Boolean networks. These robots are subject to online adaptation—i.e., they adapt some structural properties while they actually act—for improving their performance at a simple task, namely phototaxis. We study their performance variation according to the number of faulty light sensors. The outcome is that Boolean network robots exhibit graceful degradation, as the performance decreases gently with the number of faulty sensors. We also observed that a moderate number of faulty sensors—especially if located contiguously—not only produces a negligible performance decrease, but it can be sometimes even beneficial. We argue that online adaptation is a key concept to achieve fault tolerance, allowing the robot to exploit the redundancy of sensor signals and properly tune the dynamics of the same Boolean network depending on the specific working sensor configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 59.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 74.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This mostly thanks to their simple encoding and mutation.

  2. 2.

    The number of changes is randomly chosen in 1–6.

  3. 3.

    We consider a run successful if the robot reaches a point in the arena at a distance less than or equal to a given threshold value \(d_\theta \).

References

  1. Baldini, P., Braccini, M., Roli, A.: Online adaptation of robots controlled by nanowire networks: a preliminary study. In: De Stefano, C., Fontanella, F., Vanneschi, L. (eds.) WIVACE 2022. CCIS, vol. 1780, pp. 171–182. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-31183-3_14

    Chapter  Google Scholar 

  2. Benedettini, S., et al.: Dynamical regimes and learning properties of evolved Boolean networks. Neurocomputing 99, 111–123 (2013)

    Article  Google Scholar 

  3. Bonani, M., et al.: The marXbot, a miniature mobile robot opening new perspectives for the collective-robotic research. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010. IEEE (2010)

    Google Scholar 

  4. Bongard, J., Zykov, V., Lipson, H.: Resilient machines through continuous self-modeling. Science 314(5802), 1118–1121 (2006)

    Article  Google Scholar 

  5. Braccini, M., Roli, A., Barbieri, E., Kauffman, S.: On the criticality of adaptive Boolean network robots. Entropy 24, 1368 (2022)

    Article  Google Scholar 

  6. Braccini, M., Roli, A., Kauffman, S.: A novel online adaptation mechanism in artificial systems provides phenotypic plasticity. In: Schneider, J.J., Weyland, M.S., Flumini, D., Füchslin, R.M. (eds.) WIVACE 2021. CCIS, vol. 1722, pp. 121–132. Springer, Cham (2021). https://doi.org/10.1007/978-3-031-23929-8_12

    Chapter  Google Scholar 

  7. Braccini, M., Roli, A., Villani, M., Montagna, S., Serra, R.: A simplified model of chromatin dynamics drives differentiation process in Boolean models of GRN. In: Artificial Life Conference Proceedings. MIT Press, Cambridge (2019)

    Google Scholar 

  8. Braccini, M., Roli, A., Villani, M., Serra, R.: Dynamical properties and path dependence in a gene-network model of cell differentiation. Soft. Comput. 25(9), 6775–6787 (2021)

    Article  Google Scholar 

  9. Dorigo, M., et al.: Evolving self-organizing behaviors for a swarm-bot. Auton. Robots 17(2), 223–245 (2004)

    Article  Google Scholar 

  10. Edelman, G., Gally, J.: Degeneracy and complexity in biological systems. PNAS 98(24), 13763–13768 (2001)

    Article  Google Scholar 

  11. Floreano, D., Mattiussi, C.: Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies. MIT Press, Cambridge (2008)

    Google Scholar 

  12. Huang, S., Eichler, G., Bar-Yam, Y., Ingber, D.: Cell fates as high-dimensional attractor states of a complex gene regulatory network. Phys. Rev. Lett. 94(12), 128701 (2005)

    Article  Google Scholar 

  13. Huang, S., Ernberg, I., Kauffman, S.: Cancer attractors: a systems view of tumors from a gene network dynamics and developmental perspective. Semin. Cell Dev. Biol. 20(7), 869–876 (2009)

    Article  Google Scholar 

  14. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22(3), 437–467 (1969)

    Article  MathSciNet  Google Scholar 

  15. Luque, B., Solé, R.: Phase transitions in random networks: simple analytic determination of critical points. Phys. Rev. E 55(1), 257 (1997)

    Article  Google Scholar 

  16. Montagna, S., Braccini, M., Roli, A.: The impact of self-loops on Boolean networks attractor landscape and implications for cell differentiation modelling. IEEE/ACM Trans. Comput. Biol. Bioinform. 18(6), 2702–2713 (2020)

    Article  Google Scholar 

  17. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines. MIT Press, Cambridge (2000)

    Google Scholar 

  18. Pfeifer, R., Scheier, C.: Understanding Intelligence. The MIT Press, Cambridge (2001)

    Book  Google Scholar 

  19. Pfeifer, R., Lungarella, M., Iida, F.: Self-organization, embodiment, and biologically inspired robotics. Science 318(5853), 1088–1093 (2007)

    Article  Google Scholar 

  20. Pinciroli, C., et al.: ARGoS: a modular, multi-engine simulator for heterogeneous swarm robotics. Swarm Intelligence (2012)

    Google Scholar 

  21. Roli, A., Villani, M., Filisetti, A., Serra, R.: Dynamical criticality: overview and open questions. J. Syst. Sci. Complex. 31(3), 647–663 (2018)

    Article  Google Scholar 

  22. Roli, A., Manfroni, M., Pinciroli, C., Birattari, M.: On the design of Boolean network robots. In: Di Chio, C., et al. (eds.) EvoApplications 2011. LNCS, vol. 6624, pp. 43–52. Springer, Cham (2011). https://doi.org/10.1007/978-3-642-20525-5_5

    Chapter  Google Scholar 

  23. Serra, R., Villani, M., Graudenzi, A., Kauffman, S.: Why a simple model of genetic regulatory networks describes the distribution of avalanches in gene expression data. J. Theor. Biol. 246(3), 449–460 (2007)

    Article  MathSciNet  Google Scholar 

  24. Villani, M., Barbieri, A., Serra, R.: A dynamical model of genetic networks for cell differentiation. PLoS ONE 6(3), e17703 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

AR acknowledges support from the PRIN 2022 research project of the Italian Ministry of University and Research titled Org(SB-EAI) – An Organizational Approach to the Synthetic Modeling of Cognition based on Synthetic Biology and Embodied AI (Grant Number: 20222HHXAX).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Braccini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Braccini, M., Baldini, P., Roli, A. (2024). An Investigation of Graceful Degradation in Boolean Network Robots Subject to Online Adaptation. In: Villani, M., Cagnoni, S., Serra, R. (eds) Artificial Life and Evolutionary Computation. WIVACE 2023. Communications in Computer and Information Science, vol 1977. Springer, Cham. https://doi.org/10.1007/978-3-031-57430-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57430-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57429-0

  • Online ISBN: 978-3-031-57430-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics