[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Relational Schemas with Multiplicity Bounds, Diversity Bounds and Functional Dependencies

  • Conference paper
  • First Online:
Foundations of Information and Knowledge Systems (FoIKS 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14589))

  • 202 Accesses

Abstract

As yet another semantically enriched data model, we consider relational schemas with finite domain sizes and multiplicity bounds and diversity bounds together with functional dependencies as semantic constraints. As a simple variant of cardinality constraints, for a set of attributes, a multiplicity bound requires that a possible value combination occurs at most as often as the bound extension says. As a new kind of constraint, for a set of attributes, a diversity bound describes how many different value combinations under these attributes may at most occur in a relation instance. A multiplicity bound and a diversity bound together are seen as a weak abstraction of a so-called structure for the set of attributes on the left-hand side of a functional dependency. Such a structure specifies the exact size of the active domain of that set and the respective exact numbers of occurrences, summing up to a given instance size. We study how multiplicity bounds, diversity bounds and functional dependencies under finite sizes of attribute domains interact. We exhibit a powerful sound derivation system for all these items, together with a generation procedure for approximating the entailment closure of such constraints. We further analyze how to construct relation instances that exactly achieve the strongest entailed multiplicity or diversity bound extension, respectively, for some attribute set or even all of them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 59.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In the literature, there is no common agreement on the size of domains. Depending on their prevailing interests, whether more logically oriented or more combinatorially, authors deal exclusively with infinite domains, exclusively with finite domains, or both kinds, see, e.g., [1, 4, 6, 16, 18, 20, 21] and many other work.

  2. 2.

    Levene/Loizou [18], Sect. 3.7 briefly mentions it in a note added to Def. 3.100.

  3. 3.

    W.l.o.g., we only treat attribute domains of the kind \( dom _{ att } = \{1,\dots ,k_{ att }\}\).

  4. 4.

    We use \( dom /k\) as an abbreviation to denote these two related functions on \(\mathcal {U}\).

  5. 5.

    An instance r is a finite set, since all declared domains are finite.

  6. 6.

    W.l.o.g. we always assume that the set is nonempty.

References

  1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading (1995)

    Google Scholar 

  2. Armstrong, W.W.: Dependency structures of data base relationships. In: IFIP Congress, pp. 580–583 (1974)

    Google Scholar 

  3. Berens, M., Biskup, J.: On sampling representatives of relational schemas with a functional dependency. In: Varzinczak, I. (ed.) FoIKS 2022. LNCS, vol. 13388, pp. 1–19. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-11321-5_1

    Chapter  Google Scholar 

  4. Berens, M., Biskup, J., Preuß, M.: Uniform probabilistic generation of relation instances satisfying a functional dependency. Inf. Syst. 103, 101848 (2022)

    Article  Google Scholar 

  5. Biskup, J.: Inferences of multivalued dependencies in fixed and undetermined universes. Theor. Comput. Sci. 10, 93–105 (1980)

    Article  MathSciNet  Google Scholar 

  6. Biskup, J., Bonatti, P.A.: Controlled query evaluation with open queries for a decidable relational submodel. Ann. Math. Artif. Intell. 50(1–2), 39–77 (2007)

    Article  MathSciNet  Google Scholar 

  7. Biskup, J., Link, S.: Appropriate inferences of data dependencies in relational databases. Ann. Math. Artif. Intell. 63(3–4), 213–255 (2011)

    Article  MathSciNet  Google Scholar 

  8. Biskup, J., Preuß, M.: Can we probabilistically generate uniformly distributed relation instances efficiently? In: Darmont, J., Novikov, B., Wrembel, R. (eds.) ADBIS 2020. LNCS, vol. 12245, pp. 75–89. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-54832-2_8

    Chapter  Google Scholar 

  9. Chen, P.P.: The entity-relationship model - toward a unified view of data. ACM Trans. Database Syst. 1(1), 9–36 (1976)

    Article  Google Scholar 

  10. Demetrovics, J., Katona, G.O.H., Miklós, D., Thalheim, B.: On the number of independent functional dependencies. In: Dix, J., Hegner, S.J. (eds.) FoIKS 2006. LNCS, vol. 3861, pp. 83–91. Springer, Heidelberg (2006). https://doi.org/10.1007/11663881_6

    Chapter  Google Scholar 

  11. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  12. Hannula, M., Kontinen, J., Link, S.: On the finite and general implication problems of independence atoms and keys. J. Comput. Syst. Sci. 82(5), 856–877 (2016)

    Article  MathSciNet  Google Scholar 

  13. Hartmann, S.: On the implication problem for cardinality constraints and functional dependencies. Ann. Math. Artif. Intell. 33(2–4), 253–307 (2001)

    Article  MathSciNet  Google Scholar 

  14. Hartmann, S., Köhler, H., Leck, U., Link, S., Thalheim, B., Wang, J.: Constructing Armstrong tables for general cardinality constraints and not-null constraints. Ann. Math. Artif. Intell. 73(1–2), 139–165 (2015)

    Article  MathSciNet  Google Scholar 

  15. Hartmann, S., Köhler, H., Link, S.: Full hierarchical dependencies in fixed and undetermined universes. Ann. Math. Artif. Intell. 50(1–2), 195–226 (2007)

    Article  MathSciNet  Google Scholar 

  16. Katona, G.O.H., Tichler, K.: Encoding databases satisfying a given set of dependencies. In: Lukasiewicz, T., Sali, A. (eds.) FoIKS 2012. LNCS, vol. 7153, pp. 203–223. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28472-4_12

    Chapter  Google Scholar 

  17. Kolahi, S., Libkin, L.: An information-theoretic analysis of worst-case redundancy in database design. ACM Trans. Database Syst. 35(1), 5:1–5:32 (2010)

    Google Scholar 

  18. Levene, M., Loizou, G.: A Guided Tour of Relational Databases and Beyond. Springer, London (1999). https://doi.org/10.1007/978-0-85729-349-7

    Book  Google Scholar 

  19. Makowsky, J.A., Ravve, E.V.: The fundamental problem of database design. In: Plášil, F., Jeffery, K.G. (eds.) SOFSEM 1997. LNCS, vol. 1338, pp. 53–69. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63774-5_97

    Chapter  Google Scholar 

  20. Paredaens, J., Bra, P.D., Gyssens, M., Gucht, D.V.: The Structure of the Relational Database Model. EATCS Monographs on Theoretical Computer Science, vol. 17. Springer, Berlin (1989). https://doi.org/10.1007/978-3-642-69956-6

    Book  Google Scholar 

  21. Thalheim, B.: Entity-Relationship Modeling – Foundations of Database Technology. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-662-04058-4

    Book  Google Scholar 

  22. Thalheim, B.: Semiotics in databases. In: Schewe, K.-D., Singh, N.K. (eds.) MEDI 2019. LNCS, vol. 11815, pp. 3–19. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32065-2_1

    Chapter  Google Scholar 

  23. Vincent, M.W., Srinivasan, B.: Redundancy and the justification for fourth normal form in relational databases. Int. J. Found. Comput. Sci. 4(4), 355–365 (1993)

    Article  Google Scholar 

  24. Wei, Z., Link, S.: Discovery and ranking of functional dependencies. In: ICDE 2019, pp. 1526–1537. IEEE (2019)

    Google Scholar 

Download references

Acknowledgements

I would like to sincerely thank Sven Hartman and Sebastian Link for greatly stimulating discussions on early ideas about the topic of this work, and the anonymous reviewers for helpful and constructive remarks about the submitted version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Biskup .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Biskup, J. (2024). Relational Schemas with Multiplicity Bounds, Diversity Bounds and Functional Dependencies. In: Meier, A., Ortiz, M. (eds) Foundations of Information and Knowledge Systems. FoIKS 2024. Lecture Notes in Computer Science, vol 14589. Springer, Cham. https://doi.org/10.1007/978-3-031-56940-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56940-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56939-5

  • Online ISBN: 978-3-031-56940-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics