[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Model-Based Diagnosis with ASP for Non-groundable Domains

  • Conference paper
  • First Online:
Foundations of Information and Knowledge Systems (FoIKS 2024)

Abstract

Model-based diagnosis is a technique for identifying malfunctioning components in systems. While it has successfully been applied to systems such as digital circuits, this paper aims to extend applicability to systems such as programs that process values from large domains, for example, term structures. In these cases, especially when multiple components may be faulty, it is challenging to identify a diagnosis that provides a consistent model with respect to the specified domain. This paper presents an Answer-Set Programming (ASP) based method for computing such diagnoses. We are particularly interested in functional circuits over domains of values, such as rational numbers and inductive data types, to diagnose faults in programming assignments in order to advance intelligent tutoring systems. This article shows how a consistent diagnosis, justified by intermediate values, can be achieved efficiently using ASP. Additionally, an adaption to Constraint Answer Set Programming with s(CASP) is presented that avoids grounding, allowing domain sizes to be handled that are too large to be grounded.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 59.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    s(CASP) does not yet fully implement the ASP Core 2 language standard, therefore, a direct translation is not always possible [4].

  2. 2.

    Since s(CASP) provides the option to interface with alternative constraint solvers where an integer constraint solver might be an alternative.

References

  1. Arias, J., Carro, M., Chen, Z., Gupta, G.: Justifications for goal-directed constraint answer set programming. arXiv preprint arXiv:2009.10238 (2020)

  2. Arias, J., Carro, M., Salazar, E., Marple, K., Gupta, G.: Constraint answer set programming without grounding. Theory Pract. Logic Program. 18(3–4), 337–354 (2018)

    Article  MathSciNet  Google Scholar 

  3. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011)

    Article  Google Scholar 

  4. Calimeri, F., et al.: ASP-Core-2 input language format. Theory Pract. Logic Program. 20(2), 294–309 (2020). https://doi.org/10.1017/S1471068419000450

    Article  MathSciNet  Google Scholar 

  5. Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp. 293–322. Springer, Boston (1978). https://doi.org/10.1007/978-1-4684-3384-5_11

    Chapter  Google Scholar 

  6. Console, L., Torasso, P.: A spectrum of logical definitions of model-based diagnosis. Comput. Intell. 7(3), 133–141 (1991)

    Article  Google Scholar 

  7. Davis, R.: Diagnostic reasoning based on structure and behavior. Artif. Intell. 24(1–3), 347–410 (1984)

    Article  Google Scholar 

  8. De Kleer, J., Williams, B.C.: Diagnosing multiple faults. Artif. Intell. 32(1), 97–130 (1987)

    Article  Google Scholar 

  9. Dechter, R., Cohen, D., et al.: Constraint Processing. Morgan Kaufmann, Burlington (2003)

    Google Scholar 

  10. Friedrich, G., Gottlob, G., Nejdl, W.: Physical impossibility instead of fault models. In: AAAI, vol. 90, pp. 331–336 (1990)

    Google Scholar 

  11. Friedrich, G., Nejdl, W.: MOMO-model-based diagnosis for everybody. In: Sixth Conference on Artificial Intelligence for Applications, pp. 206–213. IEEE (1990)

    Google Scholar 

  12. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with clingo. CoRR abs/1705.09811 (2017)

    Google Scholar 

  13. Gebser, M., Schaub, T., Thiele, S.: GrinGo: a new grounder for answer set programming. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS, vol. 4483, pp. 266–271. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72200-7_24

    Chapter  Google Scholar 

  14. Gupta, G., et al.: Automating commonsense reasoning with ASP and s(CASP). In: Proceedings of 2nd Workshop on Goal-directed Execution of Answer Set Programs (GDE 2022) (2022)

    Google Scholar 

  15. Janhunen, T., Nimelä, I.: The answer set programming paradigm. AI Mag. 37(3), 13–24 (2016)

    Google Scholar 

  16. Jannach, D., Schmitz, T.: Model-based diagnosis of spreadsheet programs: a constraint-based debugging approach. Autom. Softw. Eng. 23, 105–144 (2016)

    Article  Google Scholar 

  17. Keuning, H., Jeuring, J., Heeren, B.: Towards a systematic review of automated feedback generation for programming exercises. In: Proceedings of the 2016 ACM Conference on Innovation and Technology in Computer Science Education, pp. 41–46 (2016)

    Google Scholar 

  18. de Kleer, J.: Focusing on probable diagnoses. In: AAAI, vol. 91, pp. 842–848 (1991)

    Google Scholar 

  19. Kuhlmann, I., Gessler, A., Laszlo, V., Thimm, M.: A comparison of ASP-based and SAT-based algorithms for the contension inconsistency measure. In: Dupin de Saint-Cyr, F., Öztürk-Escoffier, M., Potyka, N. (eds.) SUM 2022. LNCS, vol. 13562, pp. 139–153. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-18843-5_10

    Chapter  Google Scholar 

  20. Ligeza, A.: Towards constructive abduction. In: KEOD, pp. 352–357 (2015)

    Google Scholar 

  21. Ligeza, A.: Constraint programming for constructive abduction. A case study in diagnostic model-based reasoning. In: Koscielny, J., Syfert, M., Sztyber, A. (eds.) DPS 2017. AISC, vol. 635, pp. 94–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-64474-5_8

    Chapter  Google Scholar 

  22. Marple, K., Salazar, E., Chen, Z., Gupta, G.: The s(ASP) predicate answer set programming system. The Association for Logic Programming Newsletter (2017)

    Google Scholar 

  23. Mozetič, I., Holzbaur, C., Novak, F., Santo-Zarnik, M.: Model-Based Analogue Circuit Diagnosis with CLP(R). In: Brauer, W., Hernández, D. (eds.) Verteilte Künstliche Intelligenz und kooperatives Arbeiten. Informatik-Fachberichte, vol. 291, pp. 343–353. Springer, Heidelberg (1991). https://doi.org/10.1007/978-3-642-76980-1_31

    Chapter  Google Scholar 

  24. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987)

    Article  MathSciNet  Google Scholar 

  25. Struss, P., Dressler, O.: “Physical Negation” integrating fault models into the general diagnostic engine. In: IJCAI, vol. 89, pp. 1318–1323 (1989)

    Google Scholar 

  26. Wotawa, F.: On the use of answer set programming for model-based diagnosis. In: Fujita, H., Fournier-Viger, P., Ali, M., Sasaki, J. (eds.) IEA/AIE 2020. LNCS, vol. 12144, pp. 518–529. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55789-8_45

    Chapter  Google Scholar 

  27. Wotawa, F., Dumitru, V.A.: The Java2CSP debugging tool utilizing constraint solving and model-based diagnosis principles. In: Fujita, H., Fournier-Viger, P., Ali, M., Wang, Y. (eds.) IEA/AIE 2022. LNCS, vol. 13343, pp. 543–554. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08530-7_46

    Chapter  Google Scholar 

  28. Wotawa, F., Kaufmann, D.: Model-based reasoning using answer set programming. Appl. Intell. 1–19 (2022)

    Google Scholar 

  29. Wotawa, F., Nica, M., Moraru, I.: Automated debugging based on a constraint model of the program and a test case. J. Logic Algebraic Program. 81(4), 390–407 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work has been carried out in the context of the VoLL-KI project (grant 16DHKBI091), funded by Bundesministeriums für Bildung und Forschung (BMBF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Bayerkuhnlein .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bayerkuhnlein, M., Wolter, D. (2024). Model-Based Diagnosis with ASP for Non-groundable Domains. In: Meier, A., Ortiz, M. (eds) Foundations of Information and Knowledge Systems. FoIKS 2024. Lecture Notes in Computer Science, vol 14589. Springer, Cham. https://doi.org/10.1007/978-3-031-56940-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56940-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56939-5

  • Online ISBN: 978-3-031-56940-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics