[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Axiomatization of Implication for Probabilistic Independence and Unary Variants of Marginal Identity and Marginal Distribution Equivalence

  • Conference paper
  • First Online:
Foundations of Information and Knowledge Systems (FoIKS 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14589))

  • 210 Accesses

Abstract

We consider probabilistic independence and unary variants of marginal identity and marginal distribution equivalence over finite probability distributions. Two variables x and y satisfy a unary marginal identity when they are identically distributed. If the multisets of the marginal probabilities of all possible values for variables x and y are equal, the variables satisfy a unary marginal distribution equivalence. This paper offers a sound and complete finite axiomatization and a polynomial-time algorithm for the implication problem for probabilistic independence, unary marginal identity, and unary marginal distribution equivalence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 59.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In [4], the marginal identity was called the probabilistic inclusion atom with slightly different, but equivalent semantics [11].

  2. 2.

    Since a functional dependency \(\mathop {=\!} (\bar{x},\bar{y})\) (i.e. \(\bar{x}\) determines \(\bar{y}\)) and probabilistic independence \(\bar{x}{\perp \!\!\!\!\perp }\bar{y}\) can be expressed with probabilistic conditional independencies \({\bar{y} \perp \!\!\!\!\perp _{\bar{x}} \bar{y}}\) and \({\bar{x} \perp \!\!\!\!\perp _{\emptyset } \bar{y}}\), respectively, this problem and the one considered in this paper are both examples of implication problems for a fragment of probabilistic conditional independencies together with unary marginal identities and marginal distribution equivalences.

  3. 3.

    Note that we do not make a distinction between axioms and inference rules; in this paper they are both called “axioms”.

  4. 4.

    Note that clearly \(|\mathbb {X}_{w=0}|=1\) for all \(w\in \{u_1,\dots ,u_k\}\), and \(|\mathbb {X}_{w=a}|=1/2\) for all \(a\in \{0,1\}\) and \(w\in D\backslash \{x_1,u_1,\dots ,u_k\}\). An easy induction proof shows that \(|\mathbb {X}_{x_1=a}|=1/2\) for all \(a\in \{0,1\}\).

References

  1. Armstrong, W.W.: Dependency structures of data base relationships. In: Proceedings of the IFIP World Computer Congress, pp. 580–583 (1974)

    Google Scholar 

  2. Beeri, C., Bernstein, P.A.: Computational problems related to the design of normal form relational schemas. ACM Trans. Database Syst. 4(1), 30–59 (1979). https://doi.org/10.1145/320064.320066, http://doi.acm.org/10.1145/320064.320066

  3. Casanova, M.A., Fagin, R., Papadimitriou, C.H.: Inclusion dependencies and their interaction with functional dependencies. J. Comput. Syst. Sci. 28(1), 29–59 (1984)

    Article  MathSciNet  Google Scholar 

  4. Durand, A., Hannula, M., Kontinen, J., Meier, A., Virtema, J.: Approximation and dependence via multiteam semantics. Ann. Math. Artif. Intell. 83(3–4), 297–320 (2018). https://doi.org/10.1007/s10472-017-9568-4

    Article  MathSciNet  Google Scholar 

  5. Durand, A., Hannula, M., Kontinen, J., Meier, A., Virtema, J.: Probabilistic team semantics. In: Foundations of Information and Knowledge Systems - 10th International Symposium, FoIKS 2018, Budapest, Hungary, 14–18 May 2018, Proceedings, pp. 186–206 (2018). https://doi.org/10.1007/978-3-319-90050-6_11

  6. Galliani, P.: Game Values and Equilibria for Undetermined Sentences of Dependence Logic (2008). mSc Thesis. ILLC Publications, MoL-2008-08

    Google Scholar 

  7. Galliani, P.: Inclusion and exclusion dependencies in team semantics: on some logics of imperfect information. Ann. Pure Appl. Log. 163(1), 68–84 (2012)

    Article  MathSciNet  Google Scholar 

  8. Geiger, D., Paz, A., Pearl, J.: Axioms and algorithms for inferences involving probabilistic independence. Inf. Comput. 91(1), 128–141 (1991)

    Article  MathSciNet  Google Scholar 

  9. Grädel, E., Väänänen, J.: Dependence and independence. Stud. Log. 101(2), 399–410 (2013). https://doi.org/10.1007/s11225-013-9479-2, http://dx.doi.org/10.1007/s11225-013-9479-2

  10. Hannula, M.: Conditional independence on semiring relations (2023). arXiv:2310.01910 [cs.DB]

  11. Hannula, M., Hirvonen, Å., Kontinen, J., Kulikov, V., Virtema, J.: Facets of distribution identities in probabilistic team semantics. In: Calimeri, F., Leone, N., Manna, M. (eds.) JELIA 2019. LNCS (LNAI), vol. 11468, pp. 304–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19570-0_20

    Chapter  Google Scholar 

  12. Hannula, M., Link, S.: On the interaction of functional and inclusion dependencies with independence atoms. In: Pei, J., Manolopoulos, Y., Sadiq, S., Li, J. (eds.) DASFAA 2018. LNCS, vol. 10828, pp. 353–369. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91458-9_21

    Chapter  Google Scholar 

  13. Hannula, M., Virtema, J.: Tractability frontiers in probabilistic team semantics and existential second-order logic over the reals. Ann. Pure Appl. Log. 173(10), 103108 (2022). https://doi.org/10.1016/j.apal.2022.103108, https://www.sciencedirect.com/science/article/pii/S0168007222000239, logics of Dependence and Independence

  14. Hirvonen, M.: The implication problem for functional dependencies and variants of marginal distribution equivalences. In: Varzinczak, I. (eds.) Foundations of Information and Knowledge Systems. FoIKS 2022. LNCS, pp. 130–146. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-11321-5_8

  15. Hodges, W.: Compositional semantics for a language of imperfect information. J. Interest Group Pure Appl. Log. 5(4), 539–563 (1997)

    MathSciNet  Google Scholar 

  16. Hyttinen, T., Paolini, G., Väänänen, J.: A logic for arguing about probabilities in measure teams. Arch. Math. Log. 56(5–6), 475–489 (2017). https://doi.org/10.1007/s00153-017-0535-x

    Article  MathSciNet  Google Scholar 

  17. Li, C.T.: Undecidability of network coding, conditional information inequalities, and conditional independence implication. IEEE Trans. Inf. Theory 69(6), 3493–3510 (2023). https://doi.org/10.1109/TIT.2023.3247570

    Article  MathSciNet  Google Scholar 

  18. Väänänen, J.: Dependence Logic. Cambridge University Press, Cambridge (2007)

    Google Scholar 

Download references

Acknowledgments

The author was supported by grant 345634 of the Academy of Finland. I would like to thank the anonymous referees for valuable comments, and Miika Hannula, Matilda Häggblom, and Juha Kontinen for useful discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minna Hirvonen .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The author has no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hirvonen, M. (2024). Axiomatization of Implication for Probabilistic Independence and Unary Variants of Marginal Identity and Marginal Distribution Equivalence. In: Meier, A., Ortiz, M. (eds) Foundations of Information and Knowledge Systems. FoIKS 2024. Lecture Notes in Computer Science, vol 14589. Springer, Cham. https://doi.org/10.1007/978-3-031-56940-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56940-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56939-5

  • Online ISBN: 978-3-031-56940-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics