[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Improving Data Efficiency for Plant Cover Prediction with Label Interpolation and Monte-Carlo Cropping

  • Conference paper
  • First Online:
Pattern Recognition (DAGM GCPR 2023)

Abstract

The plant community composition is an essential indicator of environmental changes and is, for this reason, usually analyzed in ecological field studies in terms of the so-called plant cover. The manual acquisition of this kind of data is time-consuming, laborious, and prone to human error. Automated camera systems can collect high-resolution images of the surveyed vegetation plots at a high frequency. In combination with subsequent algorithmic analysis, it is possible to objectively extract information on plant community composition quickly and with little human effort. An automated camera system can easily collect the large amounts of image data necessary to train a Deep Learning system for automatic analysis. However, due to the amount of work required to annotate vegetation images with plant cover data, only few labeled samples are available. As automated camera systems can collect many pictures without labels, we introduce an approach to interpolate the sparse labels in the collected vegetation plot time series down to the intermediate dense and unlabeled images to artificially increase our training dataset to seven times its original size. Moreover, we introduce a new method we call Monte-Carlo Cropping. This approach trains on a collection of cropped parts of the training images to deal with high-resolution images efficiently, implicitly augment the training images, and speed up training. We evaluate both approaches on a plant cover dataset containing images of herbaceous plant communities and find that our methods lead to improvements in the species, community, and segmentation metrics investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 64.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://gbif.org.

References

  1. Andrzejak, M., Korell, L., Auge, H., Knight, T.M.: Effects of climate change and pollen supplementation on the reproductive success of two grassland plant species. Ecol. Evol. 12(1), e8501 (2022)

    Article  Google Scholar 

  2. Bolzano, B.: Beyträge zu einer begründeteren Darstellung der Mathematik, vol. 1. Im Verlage bey Caspar Widtmann (1810)

    Google Scholar 

  3. Bruelheide, H., et al.: Global trait-environment relationships of plant communities. Nat. Ecol. Evol. 2(12), 1906–1917 (2018)

    Article  Google Scholar 

  4. Cheng, B., et al.: Panoptic-deeplab: a simple, strong, and fast baseline for bottom-up panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12475–12485 (2020)

    Google Scholar 

  5. Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large scale fine-grained categorization and domain-specific transfer learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4109–4118 (2018)

    Google Scholar 

  6. Evans, M.J., Rosenthal, J.S.: Probability and Statistics: The Science of Uncertainty. Macmillan, New York (2004)

    Google Scholar 

  7. Gerstner, K., Dormann, C.F., Stein, A., Manceur, A.M., Seppelt, R.: Editor’s choice: review: effects of land use on plant diversity-a global meta-analysis. J. Appl. Ecol. 51(6), 1690–1700 (2014)

    Article  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  9. Helm, J., Dutoit, T., Saatkamp, A., Bucher, S.F., Leiterer, M., Römermann, C.: Recovery of mediterranean steppe vegetation after cultivation: legacy effects on plant composition, soil properties and functional traits. Appl. Veg. Sci. 22(1), 71–84 (2019)

    Article  Google Scholar 

  10. Hill, M.O., Gauch, H.G.: Detrended correspondence analysis: an improved ordination technique. In: van der Maarel, E. (ed.) Classification and ordination. AIVS, vol. 2, pp. 47–58. Springer, Dordrecht (1980). https://doi.org/10.1007/978-94-009-9197-2_7

    Chapter  Google Scholar 

  11. Kahn, J., Lee, A., Hannun, A.: Self-training for end-to-end speech recognition. In: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 7084–7088. IEEE (2020)

    Google Scholar 

  12. Körschens, M., Bodesheim, P., Denzler, J.: Beyond global average pooling: alternative feature aggregations for weakly supervised localization. In: VISIGRAPP (2022)

    Google Scholar 

  13. Körschens, M.: Weakly supervised segmentation pretraining for plant cover prediction. In: Bauckhage, C., Gall, J., Schwing, A. (eds.) DAGM GCPR 2021. LNCS, vol. 13024, pp. 589–603. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92659-5_38

    Chapter  Google Scholar 

  14. Körschens, M., Bodesheim, P., Römermann, C., Bucher, S.F., Ulrich, J., Denzler, J.: Towards confirmable automated plant cover determination. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12540, pp. 312–329. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65414-6_22

    Chapter  Google Scholar 

  15. Li, C., et al.: Yolov6 v3. 0: a full-scale reloading. arXiv preprint arXiv:2301.05586 (2023)

  16. Li, S., et al.: Efficient multi-order gated aggregation network. arXiv preprint arXiv:2211.03295 (2022)

  17. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2117–2125 (2017)

    Google Scholar 

  18. Liu, H., et al.: Shifting plant species composition in response to climate change stabilizes grassland primary production. Proc. Natl. Acad. Sci. 115(16), 4051–4056 (2018)

    Article  MathSciNet  Google Scholar 

  19. Lloret, F., Peñuelas, J., Prieto, P., Llorens, L., Estiarte, M.: Plant community changes induced by experimental climate change: seedling and adult species composition. Perspect. Plant Ecol. Evol. Syst. 11(1), 53–63 (2009)

    Article  Google Scholar 

  20. Rosenzweig, C., Casassa, G., Karoly, D.J., et al.: Assessment of observed changes and responses in natural and managed systems. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 79–131 (2007)

    Google Scholar 

  21. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  22. Scudder, H.: Probability of error of some adaptive pattern-recognition machines. IEEE Trans. Inf. Theory 11(3), 363–371 (1965)

    Article  MathSciNet  Google Scholar 

  23. Souza, L., Zelikova, T.J., Sanders, N.J.: Bottom-up and top-down effects on plant communities: nutrients limit productivity, but insects determine diversity and composition. Oikos 125(4), 566–575 (2016)

    Article  Google Scholar 

  24. Ulrich, J., et al.: Invertebrate decline leads to shifts in plant species abundance and phenology. Front. Plant Sci. 11, 1410 (2020)

    Article  Google Scholar 

  25. Wang, W., et al.: Internimage: exploring large-scale vision foundation models with deformable convolutions. arXiv preprint arXiv:2211.05778 (2022)

  26. Yuan, Y., Chen, X., Chen, X., Wang, J.: Segmentation transformer: object-contextual representations for semantic segmentation. arXiv preprint arXiv:1909.11065 (2019)

  27. Zhang, H., Cissé, M., Dauphin, Y., Lopez-Paz, D.: mixup: beyond empirical risk minimization. ArXiv abs/1710.09412 (2017)

    Google Scholar 

  28. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2921–2929 (2016)

    Google Scholar 

Download references

Acknowledgements

Matthias Körschens thanks the Carl Zeiss Foundation for the financial support. We thank Alban Gebler for enabling the image collection process in the iDiv EcoTron and Josephine Ulrich for the data collection. We acknowledge funding from the German Research Foundation (DFG) via the German Centre for Integrative Biodiversity research (iDiv) Halle-Jena-Leipzig (FZT 118) for the support of the FlexPool project PhenEye (09159751).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Körschens .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 149 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Körschens, M., Bucher, S.F., Römermann, C., Denzler, J. (2024). Improving Data Efficiency for Plant Cover Prediction with Label Interpolation and Monte-Carlo Cropping. In: Köthe, U., Rother, C. (eds) Pattern Recognition. DAGM GCPR 2023. Lecture Notes in Computer Science, vol 14264. Springer, Cham. https://doi.org/10.1007/978-3-031-54605-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54605-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54604-4

  • Online ISBN: 978-3-031-54605-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics