[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Analyzing Continuous K\(_{s}\)-Anonymization for Smart Meter Data

  • Conference paper
  • First Online:
Computer Security. ESORICS 2023 International Workshops (ESORICS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14398))

Included in the following conference series:

  • 435 Accesses

Abstract

Data anonymization is crucial to allow the widespread adoption of some technologies, such as smart meters. However, anonymization techniques should be evaluated in the context of a dataset to make meaningful statements about their eligibility for a particular use case. In this paper, we therefore analyze the suitability of continuous \(k_s\)-anonymization with CASTLE for data streams generated by smart meters. We compare CASTLE ’s continuous, piecewise \(k_s\)-anonymization with a global process in which all data is known at once, based on metrics like information loss and properties of the sensitive attribute. Our results suggest that continuous \(k_s\)-anonymization of smart meter data is reasonable and ensures privacy while having comparably low utility loss.

Supported by the Federal Ministry of Education and Research of Germany (Project 16KISA034).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 47.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 59.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://doi.org/10.24432/C58C86.

  2. 2.

    The magnitude of consumption values suggests that the values are given in Watt instead of kW as noted in the description of the dataset.

  3. 3.

    We have reached out to the developers to discuss the bugs/changes.

  4. 4.

    https://github.com/carolin-brunn/dpm-castle-analysis.

  5. 5.

    https://www.destatis.de/EN/Themes/Society-Environment/Environment/Material-Energy-Flows/Tables/electricity-consumption-households.html, Last accessed 11 August 2023.

References

  1. ARX homepage. https://arx.deidentifier.org/. Accessed 14 Jun 2023

  2. Alshohoumi, F., Sarrab, M., Al-Hamdani, A., Al-Abri, D.: Systematic review of existing IoT architectures security and privacy issues and concerns. Int. J. Adv. Comput. Sci. Appl. 10(7), 232–251 (2019). https://doi.org/10.14569/IJACSA.2019.0100733

    Article  Google Scholar 

  3. Cao, J., Carminati, B., Ferrari, E., Tan, K.: CASTLE: continuously anonymizing data streams. IEEE Trans. Dependable Secur. Comput. 8(3), 337–352 (2011). https://doi.org/10.1109/TDSC.2009.47

    Article  Google Scholar 

  4. Chanal, P.M., Kakkasageri, M.S.: Security and privacy in IoT: a survey. Wirel. Pers. Commun. 115(2), 1667–1693 (2020). https://doi.org/10.1007/s11277-020-07649-9

    Article  Google Scholar 

  5. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79228-4_1

    Chapter  Google Scholar 

  6. Dwork, C.: Differential privacy in new settings. In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, pp. 174–183. SIAM (2010). https://doi.org/10.1137/1.9781611973075.16

  7. Eibl, G., Engel, D.: Differential privacy for real smart metering data. Comput. Sci. Res. Dev. 32(1–2), 173–182 (2017). https://doi.org/10.1007/s00450-016-0310-y

    Article  Google Scholar 

  8. Fekri, M.N., Grolinger, K., Mir, S.: Distributed load forecasting using smart meter data: federated learning with recurrent neural networks. Int. J. Electr. Power Energy Syst. 137, 107669 (2022). https://doi.org/10.1016/j.ijepes.2021.107669

    Article  Google Scholar 

  9. Gough, M., Santos, S.F., AlSkaif, T., Javadi, M.S., Castro, R., Catalão, J.P.S.: Preserving privacy of smart meter data in a smart grid environment. IEEE Trans. Ind. Inform. 18(1), 707–718 (2022). https://doi.org/10.1109/TII.2021.3074915

    Article  Google Scholar 

  10. Guo, K., Zhang, Q.: Fast clustering-based anonymization approaches with time constraints for data streams. Knowl. Based Syst. 46, 95–108 (2013). https://doi.org/10.1016/j.knosys.2013.03.007

    Article  Google Scholar 

  11. Iyengar, V.S.: Transforming data to satisfy privacy constraints. In: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada, pp. 279–288. ACM (2002). https://doi.org/10.1145/775047.775089

  12. Li, J., Tao, Y., Xiao, X.: Preservation of proximity privacy in publishing numerical sensitive data. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, Vancouver, Canada, pp. 473–486. ACM (2008). https://doi.org/10.1145/1376616.1376666

  13. Lin, J., Ma, J., Zhu, J.: Privacy-preserving household characteristic identification with federated learning method. IEEE Trans. Smart Grid 13(2), 1088–1099 (2022). https://doi.org/10.1109/TSG.2021.3125677

    Article  Google Scholar 

  14. Lou, X., Yau, D.K.Y., Tan, R., Cheng, P.: Cost and pricing of differential privacy in demand reporting for smart grids. IEEE Trans. Netw. Sci. Eng. 7(3), 2037–2051 (2020). https://doi.org/10.1109/TNSE.2020.2971723

    Article  MathSciNet  Google Scholar 

  15. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity: privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1(1), 3-es (2007). https://doi.org/10.1145/1217299.1217302

  16. Mohamed, M.A., Ghanem, S.M., Nagi, M.H.: Privacy-preserving for distributed data streams: towards L-diversity. Int. Arab J. Inf. Technol. 17(1), 52–64 (2020). https://doi.org/10.34028/iajit/17/1/7

    Article  Google Scholar 

  17. Mohamed, M.A., Nagi, M.H., Ghanem, S.M.: A clustering approach for anonymizing distributed data streams. In: 2016 11th International Conference on Computer Engineering & Systems (ICCES), Cairo, Egypt, pp. 9–16. IEEE (2016). https://doi.org/10.1109/ICCES.2016.7821968

  18. Pallas, F., Legler, J., Amslgruber, N., Grünewald, E.: RedCASTLE: practically applicable \(k_s\)-anonymity for iot streaming data at the edge in node-red. In: Proceedings of the 8th International Workshop on Middleware and Applications for the Internet of Things, M4IoT@Middleware 2021, Virtual Event, Canada, pp. 8–13. ACM (2021). https://doi.org/10.1145/3493369.3493601

  19. Robinson, A., Brown, F., Hall, N., Jackson, A., Kemp, G., Leeke, M.: CASTLEGUARD: anonymised data streams with guaranteed differential privacy. In: 2020 DASC/PiCom/CBDCom/CyberSciTech, Calgary, AB, Canada, pp. 577–584. IEEE (2020). https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00102

  20. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 10(5), 557–570 (2002). https://doi.org/10.1142/S0218488502001648

    Article  MathSciNet  Google Scholar 

  21. Yang, L., Chen, X., Luo, Y., Lan, X., Wang, W.: IDEA: a utility-enhanced approach to incomplete data stream anonymization. Tsinghua Sci. Technol. 27(1), 127–140 (2022). https://doi.org/10.26599/TST.2020.9010031

    Article  Google Scholar 

  22. Zhang, Q., Koudas, N., Srivastava, D., Yu, T.: Aggregate query answering on anonymized tables. In: 2007 IEEE 23rd International Conference on Data Engineering, Istanbul, Turkey, pp. 116–125 (2007). https://doi.org/10.1109/ICDE.2007.367857

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolin Brunn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brunn, C., von Voigt, S.N., Tschorsch, F. (2024). Analyzing Continuous K\(_{s}\)-Anonymization for Smart Meter Data. In: Katsikas, S., et al. Computer Security. ESORICS 2023 International Workshops. ESORICS 2023. Lecture Notes in Computer Science, vol 14398. Springer, Cham. https://doi.org/10.1007/978-3-031-54204-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54204-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54203-9

  • Online ISBN: 978-3-031-54204-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics