Abstract
Data anonymization is crucial to allow the widespread adoption of some technologies, such as smart meters. However, anonymization techniques should be evaluated in the context of a dataset to make meaningful statements about their eligibility for a particular use case. In this paper, we therefore analyze the suitability of continuous \(k_s\)-anonymization with CASTLE for data streams generated by smart meters. We compare CASTLE ’s continuous, piecewise \(k_s\)-anonymization with a global process in which all data is known at once, based on metrics like information loss and properties of the sensitive attribute. Our results suggest that continuous \(k_s\)-anonymization of smart meter data is reasonable and ensures privacy while having comparably low utility loss.
Supported by the Federal Ministry of Education and Research of Germany (Project 16KISA034).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
The magnitude of consumption values suggests that the values are given in Watt instead of kW as noted in the description of the dataset.
- 3.
We have reached out to the developers to discuss the bugs/changes.
- 4.
- 5.
References
ARX homepage. https://arx.deidentifier.org/. Accessed 14 Jun 2023
Alshohoumi, F., Sarrab, M., Al-Hamdani, A., Al-Abri, D.: Systematic review of existing IoT architectures security and privacy issues and concerns. Int. J. Adv. Comput. Sci. Appl. 10(7), 232–251 (2019). https://doi.org/10.14569/IJACSA.2019.0100733
Cao, J., Carminati, B., Ferrari, E., Tan, K.: CASTLE: continuously anonymizing data streams. IEEE Trans. Dependable Secur. Comput. 8(3), 337–352 (2011). https://doi.org/10.1109/TDSC.2009.47
Chanal, P.M., Kakkasageri, M.S.: Security and privacy in IoT: a survey. Wirel. Pers. Commun. 115(2), 1667–1693 (2020). https://doi.org/10.1007/s11277-020-07649-9
Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79228-4_1
Dwork, C.: Differential privacy in new settings. In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, pp. 174–183. SIAM (2010). https://doi.org/10.1137/1.9781611973075.16
Eibl, G., Engel, D.: Differential privacy for real smart metering data. Comput. Sci. Res. Dev. 32(1–2), 173–182 (2017). https://doi.org/10.1007/s00450-016-0310-y
Fekri, M.N., Grolinger, K., Mir, S.: Distributed load forecasting using smart meter data: federated learning with recurrent neural networks. Int. J. Electr. Power Energy Syst. 137, 107669 (2022). https://doi.org/10.1016/j.ijepes.2021.107669
Gough, M., Santos, S.F., AlSkaif, T., Javadi, M.S., Castro, R., Catalão, J.P.S.: Preserving privacy of smart meter data in a smart grid environment. IEEE Trans. Ind. Inform. 18(1), 707–718 (2022). https://doi.org/10.1109/TII.2021.3074915
Guo, K., Zhang, Q.: Fast clustering-based anonymization approaches with time constraints for data streams. Knowl. Based Syst. 46, 95–108 (2013). https://doi.org/10.1016/j.knosys.2013.03.007
Iyengar, V.S.: Transforming data to satisfy privacy constraints. In: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada, pp. 279–288. ACM (2002). https://doi.org/10.1145/775047.775089
Li, J., Tao, Y., Xiao, X.: Preservation of proximity privacy in publishing numerical sensitive data. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, Vancouver, Canada, pp. 473–486. ACM (2008). https://doi.org/10.1145/1376616.1376666
Lin, J., Ma, J., Zhu, J.: Privacy-preserving household characteristic identification with federated learning method. IEEE Trans. Smart Grid 13(2), 1088–1099 (2022). https://doi.org/10.1109/TSG.2021.3125677
Lou, X., Yau, D.K.Y., Tan, R., Cheng, P.: Cost and pricing of differential privacy in demand reporting for smart grids. IEEE Trans. Netw. Sci. Eng. 7(3), 2037–2051 (2020). https://doi.org/10.1109/TNSE.2020.2971723
Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity: privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1(1), 3-es (2007). https://doi.org/10.1145/1217299.1217302
Mohamed, M.A., Ghanem, S.M., Nagi, M.H.: Privacy-preserving for distributed data streams: towards L-diversity. Int. Arab J. Inf. Technol. 17(1), 52–64 (2020). https://doi.org/10.34028/iajit/17/1/7
Mohamed, M.A., Nagi, M.H., Ghanem, S.M.: A clustering approach for anonymizing distributed data streams. In: 2016 11th International Conference on Computer Engineering & Systems (ICCES), Cairo, Egypt, pp. 9–16. IEEE (2016). https://doi.org/10.1109/ICCES.2016.7821968
Pallas, F., Legler, J., Amslgruber, N., Grünewald, E.: RedCASTLE: practically applicable \(k_s\)-anonymity for iot streaming data at the edge in node-red. In: Proceedings of the 8th International Workshop on Middleware and Applications for the Internet of Things, M4IoT@Middleware 2021, Virtual Event, Canada, pp. 8–13. ACM (2021). https://doi.org/10.1145/3493369.3493601
Robinson, A., Brown, F., Hall, N., Jackson, A., Kemp, G., Leeke, M.: CASTLEGUARD: anonymised data streams with guaranteed differential privacy. In: 2020 DASC/PiCom/CBDCom/CyberSciTech, Calgary, AB, Canada, pp. 577–584. IEEE (2020). https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00102
Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 10(5), 557–570 (2002). https://doi.org/10.1142/S0218488502001648
Yang, L., Chen, X., Luo, Y., Lan, X., Wang, W.: IDEA: a utility-enhanced approach to incomplete data stream anonymization. Tsinghua Sci. Technol. 27(1), 127–140 (2022). https://doi.org/10.26599/TST.2020.9010031
Zhang, Q., Koudas, N., Srivastava, D., Yu, T.: Aggregate query answering on anonymized tables. In: 2007 IEEE 23rd International Conference on Data Engineering, Istanbul, Turkey, pp. 116–125 (2007). https://doi.org/10.1109/ICDE.2007.367857
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Brunn, C., von Voigt, S.N., Tschorsch, F. (2024). Analyzing Continuous K\(_{s}\)-Anonymization for Smart Meter Data. In: Katsikas, S., et al. Computer Security. ESORICS 2023 International Workshops. ESORICS 2023. Lecture Notes in Computer Science, vol 14398. Springer, Cham. https://doi.org/10.1007/978-3-031-54204-6_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-54204-6_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-54203-9
Online ISBN: 978-3-031-54204-6
eBook Packages: Computer ScienceComputer Science (R0)