Abstract
In this chapter, we first give an overview of the smart city architecture and applications. Then, we analyze the privacy challenges in smart cities and discuss the motivations and benefits of applying decentralized trust models and approaches to achieve privacy preservation. Finally, we describe the organization of this monograph.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
United Nations Department of Economic and Social Affairs, Population Division: Revision of world urbanization prospects (2018). https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html. Accessed 10 May 2023
R. Avtar, S. Tripathi, A.K. Aggarwal, P. Kumar, Population–urbanization–energy nexus: a review. Resources 8(3), 136 (2019)
M. Shahidehpour, Z. Li, M. Ganji, Smart cities for a sustainable urbanization: Illuminating the need for establishing smart urban infrastructures. IEEE Electrif. Mag. 6(2), 16–33 (2018)
K. Zhang, J. Ni, K. Yang, X. Liang, J. Ren, X. Shen, Security and privacy in smart city applications: Challenges and solutions. IEEE Commun. Mag. 55(1), 122–129 (2017)
F. Bélanger, R.E. Crossler, Privacy in the digital age: a review of information privacy research in information systems. MIS Q. 35, 1017–1041 (2011)
V. Moustaka, A. Vakali, L.G. Anthopoulos, A systematic review for smart city data analytics. ACM Comput. Surv. 51(5), 1–41 (2018)
M. Sookhak, H. Tang, Y. He, F.R. Yu, Security and privacy of smart cities: a survey, research issues and challenges. IEEE Commun. Surv. Tutorials 21(2), 1718–1743 (2018)
K. Manheim, L. Kaplan, Artificial intelligence: risks to privacy and democracy. Yale J. Law Technol. 21, 106 (2019)
N. Confessore, Cambridge Analytica and Facebook: The scandal and the fallout so far (2018). https://www.nytimes.com/2018/04/04/us/politics/cambridge-analytica-scandal-fallout.html. Accessed 11 May 2023
International Organization for Standardization, ISO/IEC TS 27570:2021—privacy engineering for system life cycle processes (2021). https://www.iso.org/standard/80201.html
3rd Generation Partnership Project, 3GPP TS 33.185—security aspect for LTE support of Vehicle-to-Everything (V2X) Services (2022). https://www.3gpp.org/ftp/Specs/archive/33_series/33.185/33185-h00.zip
National Institute of Standards and Technology (NIST), NIST SP 800-144—Guidelines on Security and Privacy in Public Cloud Computing (2011). https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-144.pdf
Official Journal of the European Union, General Data Protection Regulation (2016). https://eur-lex.europa.eu/eli/reg/2016/679/oj
M. Gheisari, H.E. Najafabadi, J.A. Alzubi, J. Gao, G. Wang, A.A. Abbasi, A. Castiglione, OBPP: an ontology-based framework for privacy-preserving in IoT-based smart city. Fut. Gener. Comput. Syst. 123, 1–13 (2021)
P. Kumar, R. Kumar, G. Srivastava, G.P. Gupta, R. Tripathi, T.R. Gadekallu, N.N. Xiong, PPSF: a privacy-preserving and secure framework using blockchain-based machine-learning for IoT-driven smart cities. IEEE Trans. Netw. Sci. Eng. 8(3), 2326–2341 (2021)
I. Makhdoom, I. Zhou, M. Abolhasan, J. Lipman, W. Ni, PrivySharing: a blockchain-based framework for privacy-preserving and secure data sharing in smart cities. Comput. Secur. 88, 101653 (2020)
M. Shen, X. Tang, L. Zhu, X. Du, M. Guizani, Privacy-preserving support vector machine training over blockchain-based encrypted IoT data in smart cities. IEEE Internet Things J. 6(5), 7702–7712 (2019)
J. Chen, Y. Liu, Y. Xiang, K. Sood, RPPTD: robust privacy-preserving truth discovery scheme. IEEE Syst. J. 16(3), 4525–4531 (2021)
Y. Yu, X. Zeng, X. Xue, J. Ma, LSTM-based intrusion detection system for VANETs: a time series classification approach to false message detection. IEEE Trans. Intell. Transp. Syst. 23(12), 23906–23918 (2022)
J. Keegan, A. Ng, The popular family safety app life360 is selling precise location data on its tens of millions of users (2021). https://themarkup.org/privacy/2021/12/06/the-popular-family-safety-app-life360-is-selling-precise-location-data-on-its-tens-of-millions-of-user. Accessed 15 May 2023
J. Ni, A. Zhang, X. Lin, X. Shen, Security, privacy, and fairness in fog-based vehicular crowdsensing. IEEE Commun. Mag. 55(6), 146–152 (2017)
L. Fang, Y. Li, Z. Liu, C. Yin, M. Li, Z.J. Cao, A practical model based on anomaly detection for protecting medical IoT control services against external attacks. IEEE Trans. Ind. Inform. 17(6), 4260–4269 (2020)
X. Shen, C. Huang, D. Liu, L. Xue, W. Zhuang, R. Sun, B. Ying, Data management for future wireless networks: architecture, privacy preservation, and regulation. IEEE Netw. 35(1), 8–15 (2021)
B. Zhao, K. Fan, K. Yang, Z. Wang, H. Li, Y. Yang, Anonymous and privacy-preserving federated learning with industrial big data. IEEE Trans. Ind. Inform. 17(9), 6314–6323 (2021)
E. Erdin, C. Zachor, M.H. Gunes, How to find hidden users: a survey of attacks on anonymity networks. IEEE Commun. Surv. Tutorials 17(4), 2296–2316 (2015)
C. Huang, J. Ni, R. Lu, X. Shen, Exploring anonymous user reviews: linkability analysis based on machine learning, in Proceedings of IEEE Global Communications Conference (2019), pp. 1–6
Z. Liu, L. Zhang, W. Ni, I.B. Collings, Uncoordinated pseudonym changes for privacy preserving in distributed networks. IEEE Trans. Mobile Comput. 19(6), 1465–1477 (2019)
P.P. Tsang, V.K. Wei, Short linkable ring signatures for e-voting, e-cash and attestation, in Proceedings of International Conference on Information Security Practice and Experience (2005), pp. 48–60
R. Lu, X. Lin, T.H. Luan, X. Liang, X. Shen, Pseudonym changing at social spots: an effective strategy for location privacy in VANETs. IEEE Trans. Veh. Technol. 61(1), 86–96 (2011)
J. Kang, R. Yu, X. Huang, Y. Zhang, Privacy-preserved pseudonym scheme for fog computing supported internet of vehicles. IEEE Trans. Intell. Transp. Syst. 19(8), 2627–2637 (2017)
R. Yu, J. Kang, X. Huang, S. Xie, Y. Zhang, S. Gjessing, MixGroup: accumulative pseudonym exchanging for location privacy enhancement in vehicular social networks. IEEE Trans. Depend. Secure Comput. 13(1), 93–105 (2015)
B. Larsen, T. Giannetsos, I. Krontiris, K. Goldman, Direct anonymous attestation on the road: efficient and privacy-preserving revocation in C-ITS, in Proceedings of ACM Conference on Security and Privacy in Wireless and Mobile Networks (2021), pp. 48–59
K. Yang, L. Chen, Z. Zhang, C.J. Newton, B. Yang, L. Xi, Direct anonymous attestation with optimal TPM signing efficiency. IEEE Trans. Inform. Forensics Secur. 16, 2260–2275 (2021)
D. Liu, H. Wu, C. Huang, J. Ni, X. Shen, Blockchain-based credential management for anonymous authentication in SAGVN. IEEE J. Sel. Areas Commun. 40(10), 3104–3116 (2022)
Y. Li, X. Cao, Y. Yuan, G. Wang, PrivSem: protecting location privacy using semantic and differential privacy. World Wide Web 22, 2407–2436 (2019)
T. Wang, N. Li, S. Jha, Locally differentially private heavy hitter identification. IEEE Trans. Depend. Secure Comput. 18(2), 982–993 (2019)
A. Wood, K. Najarian, D. Kahrobaei, Homomorphic encryption for machine learning in medicine and bioinformatics. ACM Comput. Surv. 53(4), 1–35 (2020)
C. Marcolla, V. Sucasas, M. Manzano, R. Bassoli, F.H. Fitzek, N. Aaraj, Survey on fully homomorphic encryption, theory, and applications. Proc. IEEE 110(10), 1572–1609 (2022)
Y. Zhang, R.H. Deng, S. Xu, J. Sun, Q. Li, D. Zheng, Attribute-based encryption for cloud computing access control: a survey. ACM Comput. Surv. 53(4), 1–41 (2020)
J. Ni, X. Lin, X. Shen, Toward privacy-preserving valet parking in autonomous driving era. IEEE Trans. Veh. Technol. 68(3), 2893–2905 (2019)
D. He, N. Kumar, H. Wang, L. Wang, K.K.R. Choo, A. Vinel, A provably-secure cross-domain handshake scheme with symptoms-matching for mobile healthcare social network. IEEE Trans. Depend. Secure Comput. 15(4), 633–645 (2016)
D. Liu, J. Ni, X. Lin, X. Shen, Transparent and accountable vehicular local advertising with practical blockchain designs. IEEE Trans. Veh. Technol. 69(12), 15694–15705 (2020)
E. Dauterman, V. Fang, N. Crooks, R.A. Popa, Reflections on trusting distributed trust, in Proceedings of ACM Workshop on Hot Topics in Networks (2022), pp. 38–45
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Huang, C., Shen, X.(. (2024). Introduction. In: Decentralized Privacy Preservation in Smart Cities. Wireless Networks. Springer, Cham. https://doi.org/10.1007/978-3-031-54075-2_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-54075-2_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-54074-5
Online ISBN: 978-3-031-54075-2
eBook Packages: Computer ScienceComputer Science (R0)