[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Texture Neural Network to Predict the Abnormal Brachial Plexus from Routine Magnetic Resonance Imaging

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Brachial plexopathy is a form of peripheral neuropathy, which occurs when there is damage to the brachial plexus (BP). However, the diagnosis of breast cancer related BP from radiological imaging is still a great challenge. This paper proposes a texture pattern based convolutional neural network, called TPPNet, to carry out abnormal prediction of BP from multiple routine magnetic resonance image (MRI) pulse sequences, i.e. T2, T1, and T1 post-gadolinium contrast administration. Different from classic CNNs, the input of the proposed TPPNet is multiple texture patterns instead of images. This allows for direct integration of radiomic (i.e. texture) features into the classification models. Beyond conventional radiomic features, we also developed a new family of texture patterns, called triple point patterns (TPPs), to extract huge number of texture patterns as representations of BP’ heterogeneity from its MRIs. These texture patterns share the same size and show very stable properties under several geometric transformations. Then, the TPPNet is proposed to carry out the differentiation task of abnormal BP for our study. It has several special characteristics including 1) avoidance of image augmentation, 2) huge number of channels, 3) simple end-to-end architecture, 4) free from the interference of multi-texture-pattern arrangements. Ablation study and comparisons demonstrate that the proposed TPPNet yields outstanding performances with the accuracies of 96.1%, 93.5% and 93.6% over T2, T1 and post-gadolinium sequences which exceed at least 1.3%, 5.3% and 3.4% over state-of-the-art methods for classification of normal vs. abnormal brachial plexus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 63.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shabeeb, D., Musa, A.E., et al.: Brachial plexopathy as a complication of radio-therapy: a systematic review. Curr. Cancer Ther. Rev. 15(2), 110–120 (2020)

    Article  Google Scholar 

  2. Wittenberg, K.H., Adkins, M.C.: MR imaging of nontraumatic brachial plex-opathies: frequency and spectrum of findings. Radiographics 20(4), 1024–1032 (2004)

    Google Scholar 

  3. Nisce, L.Z., Chu, F.C.H.: Radiation therapy of brachial plexus syndrome from breast cancer. Radiology 91(5), 1022–1025 (1968)

    Article  Google Scholar 

  4. Lutz, A.M., Gold, G., Beaulieu, C.: MR imaging of the brachial plexus. Magn. Reson. Imaging Clin. N. Am. 20(4), 791–826 (2012)

    Article  Google Scholar 

  5. Wang, R., Shen, H., Zhou, M.: Ultrasound nerve segmentation of brachial plexus based on optimized resu-net. In: 2019 IEEE International Conference on Imaging Systems and Techniques (IST). pp. 1−6 (2019)

    Google Scholar 

  6. Pisda, K., Jain, P., Sisodia, D.S.: Deep networks for brachial plexus nerves segmentation and detection using ultrasound images. In: Garg, L., Kesswani, N., Vella, J.G., Xuereb, P.A., Lo, M.F., Diaz, R., Misra, S., Gupta, V., Randhawa, P. (eds.) ISMS 2020. LNNS, vol. 303, pp. 132–146. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-86223-7_13

    Chapter  Google Scholar 

  7. Wang, Y., Geng, J., Zhou, C., Zhang, Y.: Segmentation of ultrasound brachial plexus based on u-net. In: 2021 International Conference on Communications, Information System and Computer Engineering (CISCE). pp. 482−485 (2021)

    Google Scholar 

  8. Tian, D., Wang, Q., et al.: Brachial plexus nerve trunk recognition from ultra-sound images: a comparative study of deep learning models. IEEE Access 10, 82003–82014 (2022)

    Article  Google Scholar 

  9. Sureka, J., Cherian, R.A., Alexander, M., Thomas, B.P.: MRI of brachial plex-opathies. Clin. Radiol. 64(2), 208–218 (2009)

    Article  Google Scholar 

  10. Lambin, P., Leijenaar, R.T.H., et al.: Radiomics: the bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 14(12), 749–762 (2017)

    Article  Google Scholar 

  11. van Griethuysen, J.J.M., Fedorov, A., et al.: Computational radiomics system to decode the radiographic phenotype. Can. Res. 77(21), e104–e107 (2017)

    Article  Google Scholar 

  12. Ramel, A.A.: Analysis of membrane process model from black box to machine learning. J. Mach. Comput. 2(1), 2788–7669 (2022)

    Google Scholar 

  13. Tan, J., Lei, B., et al.: 3D-GLCM CNN: a 3-dimensional gray-level cosoccur-rence matrix-based CNN model for polyp classification via CT colonography. IEEE Trans. Med. Imaging 39(6), 2013–2024 (2020)

    Article  Google Scholar 

  14. Yoo, T.S., Ackerman, M.J., et al.: Engineering and algorithm design for an image processing API: a technical report on ITK – the insight toolkit. In: Westwood, J. (ed.) Proceeding of Medicine Meets Virtual Reality, pp. 586−592 (2002)

    Google Scholar 

  15. McCormick, M., Liu, X., et al.: Enabling reproducible research and open science. Front. Neuroinform. 8, 13 (2014)

    Article  Google Scholar 

  16. Isensee, F., Jaeger, P.F., et al.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  17. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  MATH  Google Scholar 

  18. Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19(6), 1635–1650 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Vallières, M., Zwanenburg, A., et al.: Responsible radiomics research for faster clinical translation. J. Nucl. Med. 59(2), 189–193 (2018)

    Article  Google Scholar 

  20. Güner, A., Alçin, Ö.F., Şengür, A.: Automatic digital modulation classification using extreme learning machine with local binary pattern histogram features. Measurement 145, 214–225 (2019)

    Article  Google Scholar 

  21. Bian, M., Liu, J. K., et al.: Verifiable privacy-enhanced rotation invariant LBP feature extraction in fog computing. In: IEEE Transactions on Industrial Informatics (2023)

    Google Scholar 

  22. Cao, W., Liang, Z., Gao, Y., et al.: A dynamic lesion model for differentiation of malignant and benign pathologies. Sci. Rep. 11, 3485 (2021)

    Article  Google Scholar 

  23. Galavis, P.E., Hollensen, C., et al.: Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol. 49(7), 1012–1016 (2010)

    Article  Google Scholar 

  24. Doumou, G., Siddique, M., Tsoumpas, C., et al.: The precision of textural analysis in 18F-FDG-PET scans of oesophageal cancer. Eur. Radiol. 25(9), 2805–2812 (2015)

    Article  Google Scholar 

  25. Wahid, K.A., He, R., et al.: Intensity standardization methods in magnetic reso-nance imaging of head and neck cancer. Phy. Imaging Radiat. Oncol. 20, 88–93 (2021)

    Article  Google Scholar 

  26. Cao, W., Pomeroy, M.J., et al.: Lesion classification by model-based feature extraction: a differential affine invariant model of soft tissue elasticity. arXiv pre-print arXiv:2205.14029 (2022)

  27. Pomeroy, M.J., Pickhardt, P., Liang, J., Lu, H.: Histogram-based adaptive gray level scaling for texture feature classification of colorectal polyps. In: Medical Imaging 2018: Computer-Aided Diagnosis, vol. 10575, pp. 507−513. SPIE (2018)

    Google Scholar 

  28. Simonyan, K., Zisserman, A.: Very deep convolution newtworks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

    Google Scholar 

  29. Szegedy, C., Liu, W., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, pp. 1−9 (2015)

    Google Scholar 

  30. Howard A.G., Zhu, M., et al.: MobileNets: efficient convolutional neural net-works for mobile vision applications. arXiv:1704.04861 (2017)

  31. Wu, B., et al.: Visual transformers: where do transformers really belong in vi-sion models?. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, pp. 579−589 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Kline .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 958 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, W. et al. (2023). A Texture Neural Network to Predict the Abnormal Brachial Plexus from Routine Magnetic Resonance Imaging. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14227. Springer, Cham. https://doi.org/10.1007/978-3-031-43993-3_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43993-3_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43992-6

  • Online ISBN: 978-3-031-43993-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics