Abstract
Reconstructing soft tissues from stereo endoscope videos is an essential prerequisite for many medical applications. Previous methods struggle to produce high-quality geometry and appearance due to their inadequate representations of 3D scenes. To address this issue, we propose a novel neural-field-based method, called EndoSurf, which effectively learns to represent a deforming surface from an RGBD sequence. In EndoSurf, we model surface dynamics, shape, and texture with three neural fields. First, 3D points are transformed from the observed space to the canonical space using the deformation field. The signed distance function (SDF) field and radiance field then predict their SDFs and colors, respectively, with which RGBD images can be synthesized via differentiable volume rendering. We constrain the learned shape by tailoring multiple regularization strategies and disentangling geometry and appearance. Experiments on public endoscope datasets demonstrate that EndoSurf significantly outperforms existing solutions, particularly in reconstructing high-fidelity shapes. Code is available at https://github.com/Ruyi-Zha/endosurf.git.
R. Zha and X. Cheng—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Allan, M., et al.: Stereo correspondence and reconstruction of endoscopic data challenge. arXiv preprint arXiv:2101.01133 (2021)
Atzmon, M., Lipman, Y.: SAL: sign agnostic learning of shapes from raw data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2565–2574 (2020)
Bozic, A., Zollhofer, M., Theobalt, C., Nießner, M.: DeepDeform: learning non-rigid rgb-d reconstruction with semi-supervised data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7002–7012 (2020)
Cai, H., Feng, W., Feng, X., Wang, Y., Zhang, J.: Neural surface reconstruction of dynamic scenes with monocular RGB-D camera. arXiv preprint arXiv:2206.15258 (2022)
Cheng, X., et al.: Hierarchical neural architecture search for deep stereo matching. Adv. Neural. Inf. Process. Syst. 33, 22158–22169 (2020)
Cheng, X., Zhong, Y., Harandi, M., Drummond, T., Wang, Z., Ge, Z.: Deep laparoscopic stereo matching with transformers. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, Part VII. LNCS, vol. 13437, pp. 464–474. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16449-1_44
Chong, N., Si, Y., Zhao, W., Zhang, Q., Yin, B., Zhao, Y.: Virtual reality application for laparoscope in clinical surgery based on Siamese network and census transformation. In: Su, R., Zhang, Y.-D., Liu, H. (eds.) MICAD 2021. LNEE, vol. 784, pp. 59–70. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-3880-0_7
Crandall, M.G., Lions, P.L.: Viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 277(1), 1–42 (1983)
Gao, W., Tedrake, R.: SurfelWarp: efficient non-volumetric single view dynamic reconstruction. arXiv preprint arXiv:1904.13073 (2019)
Gropp, A., Yariv, L., Haim, N., Atzmon, M., Lipman, Y.: Implicit geometric regularization for learning shapes. arXiv preprint arXiv:2002.10099 (2020)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Li, Y., et al.: SuPer: a surgical perception framework for endoscopic tissue manipulation with surgical robotics. IEEE Robot. Autom. Lett. 5(2), 2294–2301 (2020)
Li, Z., et al.: Revisiting stereo depth estimation from a sequence-to-sequence perspective with transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6197–6206 (2021)
Long, Y., et al.: E-DSSR: efficient dynamic surgical scene reconstruction with transformer-based stereoscopic depth perception. In: de Bruijne, M., et al. (eds.) MICCAI 2021, Part IV. LNCS, vol. 12904, pp. 415–425. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_40
Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput. Graph. 21(4), 163–169 (1987)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part I. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24
Newcombe, R.A., Fox, D., Seitz, S.M.: DynamicFusion: reconstruction and tracking of non-rigid scenes in real-time. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 343–352 (2015)
Nicolau, S., Soler, L., Mutter, D., Marescaux, J.: Augmented reality in laparoscopic surgical oncology. Surg. Oncol. 20(3), 189–201 (2011)
Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Differentiable volumetric rendering: learning implicit 3D representations without 3D supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3504–3515 (2020)
Oechsle, M., Peng, S., Geiger, A.: UNISURF: unifying neural implicit surfaces and radiance fields for multi-view reconstruction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5589–5599 (2021)
Overley, S.C., Cho, S.K., Mehta, A.I., Arnold, P.M.: Navigation and robotics in spinal surgery: where are we now? Neurosurgery 80(3S), S86–S99 (2017)
Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-NeRF: neural radiance fields for dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10318–10327 (2021)
Song, J., Wang, J., Zhao, L., Huang, S., Dissanayake, G.: Dynamic reconstruction of deformable soft-tissue with stereo scope in minimal invasive surgery. IEEE Robot. Autom. Lett. 3(1), 155–162 (2017)
Tancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. Adv. Neural. Inf. Process. Syst. 33, 7537–7547 (2020)
Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: NeuS: learning neural implicit surfaces by volume rendering for multi-view reconstruction. arXiv preprint arXiv:2106.10689 (2021)
Wang, Y., Long, Y., Fan, S.H., Dou, Q.: Neural rendering for stereo 3D reconstruction of deformable tissues in robotic surgery. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, Part VII. LNCS, vol. 13437, pp. 431–441. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16449-1_41
Yariv, L., et al.: Multiview neural surface reconstruction by disentangling geometry and appearance. Adv. Neural. Inf. Process. Syst. 33, 2492–2502 (2020)
Zhou, H., Jayender, J.: EMDQ-SLAM: real-time high-resolution reconstruction of soft tissue surface from stereo laparoscopy videos. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021, Part IV. LNCS, vol. 12904, pp. 331–340. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_32
Acknowledgments
This research is funded in part via an ARC Discovery project research grant (DP220100800).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zha, R., Cheng, X., Li, H., Harandi, M., Ge, Z. (2023). EndoSurf: Neural Surface Reconstruction of Deformable Tissues with Stereo Endoscope Videos. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14228. Springer, Cham. https://doi.org/10.1007/978-3-031-43996-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-43996-4_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43995-7
Online ISBN: 978-3-031-43996-4
eBook Packages: Computer ScienceComputer Science (R0)