[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

STAR-Echo: A Novel Biomarker for Prognosis of MACE in Chronic Kidney Disease Patients Using Spatiotemporal Analysis and Transformer-Based Radiomics Models

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Chronic Kidney Disease (CKD) patients are at higher risk of Major Adverse Cardiovascular Events (MACE). Echocardiography evaluates left ventricle (LV) function and heart abnormalities. LV Wall (LVW) pathophysiology and systolic/diastolic dysfunction are linked to MACE outcomes (\(O^-\) and \(O^+\)) in CKD patients. However, traditional LV volume-based measurements like ejection-fraction offer limited predictive value as they rely only on end-phase frames. We hypothesize that analyzing LVW morphology over time, through spatiotemporal analysis, can predict MACE risk in CKD patients. However, accurately delineating and analyzing LVW at every frame is challenging due to noise, poor resolution, and the need for manual intervention. Our contribution includes (a) developing an automated pipeline for identifying and standardizing heart-beat cycles and segmenting the LVW, (b) introducing a novel computational biomarker—STAR-Echo—which combines spatiotemporal risk from radiomic (\(M_R\)) and deep learning (\(M_T\)) models to predict MACE prognosis in CKD patients, and (c) demonstrating the superior prognostic performance of STAR-Echo compared to \(M_R\), \(M_T\), as well as clinical-biomarkers (EF, BNP, and NT-proBNP) for characterizing cardiac dysfunction. STAR-Echo captured the gray level intensity distribution, perimeter and sphericity of the LVW that changes differently over time in individuals who encounter MACE outcomes. STAR-Echo achieved an AUC of \(0.71 [0.53-0.89]\) for MACE outcome classification and also demonstrated prognostic ability in Kaplan-Meier survival analysis on a holdout cohort (\(S_v=44\)) of CKD patients (\(N=150\)). It achieved superior MACE prognostication (p-value = 0.037 (log-rank test)), compared to \(M_R\) (p-value = 0.042), \(M_T\) (p-value = 0.069), clinical biomarkers—EF, BNP, and NT-proBNP (p-value >0.05).

R. Dhamdhere and G. Modanwal—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Marx, N., Floege, J.: Dapagliflozin, advanced chronic kidney disease, and mortality: new insights from the DAPA-CKD trial. Eur. Heart J. 42(13), 1228–1230 (2021)

    Article  Google Scholar 

  2. Barry, T., Farina, J.M., et al.: The role of artificial intelligence in echocardiography. J. Imaging 9, 50 (2023)

    Article  Google Scholar 

  3. Zhang, J., Gajjala, S., et al.: Fully automated echocardiogram interpretation in clinical practice. Circulation 138, 1623–1635 (2018)

    Article  Google Scholar 

  4. Yang, F., Chen, X., et al.: Automated analysis of doppler echocardiographic videos as a screening tool for valvular heart diseases. JACC Cardiovasc. Imaging 15, 551–563 (2022)

    Article  Google Scholar 

  5. Hwang, I.-C., Choi, D., et al.: Differential diagnosis of common etiologies of left ventricular hypertrophy using a hybrid CNN-LSTM model. Sci. Rep. 12, 20998 (2022)

    Article  Google Scholar 

  6. Liu, B., Chang, H., et al.: A deep learning framework assisted echocardiography with diagnosis, lesion localization, phenogrouping heterogeneous disease, and anomaly detection. Sci. Rep. 13, 3 (2023)

    Article  Google Scholar 

  7. Ouyang, D., He, B., et al.: Video-based AI for beat-to-beat assessment of cardiac function. Nature 580, 252–256 (2020)

    Article  Google Scholar 

  8. Mokhtari, M., Tsang, T., et al.: EchoGNN: explainable ejection fraction estimation with graph neural networks. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13434, pp. 360–369. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16440-8_35

    Chapter  Google Scholar 

  9. Muhtaseb, R., Yaqub, M.: EchoCoTr: estimation of the left ventricular ejection fraction from spatiotemporal echocardiography. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13434, pp. 370–379. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16440-8_36

    Chapter  Google Scholar 

  10. Fitzpatrick, J.K., Ambrosy, A.P., et al.: Prognostic value of echocardiography for heart failure and death in adults with chronic kidney disease. Am. Heart J. 248, 84–96 (2022)

    Article  Google Scholar 

  11. Mark, P.B., Mangion, K., et al.: Left ventricular dysfunction with preserved ejection fraction: the most common left ventricular disorder in chronic kidney disease patients. Clin. Kidney J. 15, 2186–2199 (2022)

    Article  Google Scholar 

  12. Zelnick, L.R., Shlipak, M.G., et al.: Prediction of incident heart failure in CKD: the CRIC study. Kidney Int. Rep. 7, 708–719 (2022)

    Article  Google Scholar 

  13. Dohi, K.: Echocardiographic assessment of cardiac structure and function in chronic renal disease. J. Echocardiogr. 17, 115–122 (2019)

    Article  Google Scholar 

  14. Christensen, J., Landler, N.E., et al.: Left ventricular structure and function in patients with chronic kidney disease assessed by 3D echocardiography: the CPH-CKD ECHO study. Int. J. Cardiovasc. Imaging 38, 1233–1244 (2022)

    Article  Google Scholar 

  15. Jankowski, J., Floege, J., et al.: Cardiovascular disease in chronic kidney disease. Circulation 143, 1157–1172 (2021)

    Article  Google Scholar 

  16. Bongartz, L.G., Braam, B., et al.: Target organ cross talk in cardiorenal syndrome: animal models. Am. J. Physiol. Renal Physiol. 303, F1253–F1263 (2012)

    Article  Google Scholar 

  17. Kamran, S., Akhtar, N., et al.: Association of major adverse cardiovascular events in patients with stroke and cardiac wall motion abnormalities. J. Am. Heart Assoc. 10, e020888 (2021)

    Article  Google Scholar 

  18. Huang, M.-S., Wang, C.-S., et al.: Automated recognition of regional wall motion abnormalities through deep neural network interpretation of transthoracic echocardiography. Circulation 142, 1510–1520 (2020)

    Article  Google Scholar 

  19. Elhendy, A., Mahoney, D.W., et al.: Prognostic significance of the location of wall motion abnormalities during exercise echocardiography. J. Am. Coll. Cardiol. 40, 1623–1629 (2002)

    Article  Google Scholar 

  20. Vaswani, A., Shazeer, N., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30, Curran Associates Inc. (2017)

    Google Scholar 

  21. Feldman, H., Dember, L.: Chronic renal insufficiency cohort study (2022). Artwork Size: 263268080 MB Pages: 263268080 MB Version Number: V11 Type: dataset

    Google Scholar 

  22. Salte, I.M., Østvik, A., et al.: Artificial intelligence for automatic measurement of left ventricular strain in echocardiography. JACC Cardiovasc. Imaging 14, 1918–1928 (2021)

    Article  Google Scholar 

  23. Pandey, A., Kagiyama, N., et al.: Deep-learning models for the echocardiographic assessment of diastolic dysfunction. JACC Cardiovasc. Imaging 14, 1887–1900 (2021)

    Article  Google Scholar 

  24. Zamzmi, G., Rajaraman, S., et al.: Real-time echocardiography image analysis and quantification of cardiac indices. Med. Image Anal. 80, 102438 (2022)

    Article  Google Scholar 

  25. Lane, E.S., Azarmehr, N., et al.: Multibeat echocardiographic phase detection using deep neural networks. Comput. Biol. Med. 133, 104373 (2021)

    Article  Google Scholar 

  26. Arnab, A., Dehghani, M., et al.: ViViT: a video vision transformer. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, pp. 6816–6826. IEEE (2021)

    Google Scholar 

  27. Cheng, X., Chen, Z.: Multiple video frame interpolation via enhanced deformable separable convolution. IEEE Trans. Pattern Anal. Mach. Intell. 44, 7029–7045 (2022)

    Article  Google Scholar 

  28. Leclerc, S., Smistad, E., et al.: Deep learning for segmentation using an open large-scale dataset in 2D echocardiography. IEEE Trans. Med. Imaging 38, 2198–2210 (2019)

    Article  Google Scholar 

  29. Isensee, F., Jaeger, P.F., et al.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18, 203–211 (2021)

    Article  Google Scholar 

  30. van Griethuysen, J.J., Fedorov, A., et al.: Computational radiomics system to decode the radiographic phenotype. Can. Res. 77, e104–e107 (2017)

    Article  Google Scholar 

  31. Christ, M., Braun, N., et al.: Time series feature extraction on basis of scalable hypothesis tests (tsfresh - a python package). Neurocomputing 307, 72–77 (2018)

    Article  Google Scholar 

  32. Kursa, M.B., Rudnicki, W.R.: Feature selection with the Boruta package. J. Stat. Softw. 36, 1–13 (2010)

    Article  Google Scholar 

  33. Jain, N., McAdams, M., et al.: Screening for cardiovascular disease in CKD: PRO. Kidney360 3, 1831 (2022)

    Google Scholar 

Download references

Acknowledgement

Research reported in this publication was supported by the National Cancer Institute under award numbers R01CA268287A1, U01 CA269181, R01CA26820701A1, R01CA249992-01A1, R0CA202752-01A1, R01 CA208236-01A1, R01CA216579-01A1, R01CA220581-01A1, R01CA257612-01A1, 1U01CA239055-01, 1U01CA248226-01, 1U54CA254566-01, National Heart, Lung and Blood Institute 1R01HL15127701A1, R01HL15807101A1, National Institute of Biomedical Imaging and Bioengineering 1R43EB028736-01, VA Merit Review Award IBX004121A from the United States Department of Veterans Affairs Biomedical Laboratory Research and Development Service the Office of the Assistant Secretary of Defense for Health Affairs, through the Breast Cancer Research Program (W81XWH-19-1-0668), the Prostate Cancer Research Program (W81XWH-20-1-0851), the Lung Cancer Research Program (W81XWH-18-1-0440, W81XWH-20-1-0595), the Peer Reviewed Cancer Research Program (W81XWH-18-1-0404, W81XWH-21-1-0345, W81XWH-21-1-0160), the Kidney Precision Medicine Project (KPMP) Glue Grant and sponsored research agreements from Bristol Myers-Squibb, Boehringer-Ingelheim, Eli-Lilly and Astra-zeneca. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health, the U.S. Department of Veterans Affairs, the Department of Defense, or the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anant Madabhushi .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dhamdhere, R. et al. (2023). STAR-Echo: A Novel Biomarker for Prognosis of MACE in Chronic Kidney Disease Patients Using Spatiotemporal Analysis and Transformer-Based Radiomics Models. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14225. Springer, Cham. https://doi.org/10.1007/978-3-031-43987-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43987-2_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43986-5

  • Online ISBN: 978-3-031-43987-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics