[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

QCResUNet: Joint Subject-Level and Voxel-Level Prediction of Segmentation Quality

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Deep learning has achieved state-of-the-art performance in automated brain tumor segmentation from magnetic resonance imaging (MRI) scans. However, the unexpected occurrence of poor-quality outliers, especially in out-of-distribution samples, hinders their translation into patient-centered clinical practice. Therefore, it is important to develop automated tools for large-scale segmentation quality control (QC). However, most existing QC methods targeted cardiac MRI segmentation which involves a single modality and a single tissue type. Importantly, these methods only provide a subject-level segmentation-quality prediction, which cannot inform clinicians where the segmentation needs to be refined. To address this gap, we proposed a novel network architecture called QCResUNet that simultaneously produces segmentation-quality measures as well as voxel-level segmentation error maps for brain tumor segmentation QC. To train the proposed model, we created a wide variety of segmentation-quality results by using i) models that have been trained for a varying number of epochs with different modalities; and ii) a newly devised segmentation-generation method called SegGen. The proposed method was validated on a large public brain tumor dataset with segmentations generated by different methods, achieving high performance on the prediction of segmentation-quality metric as well as voxel-wise localization of segmentation errors. The implementation will be publicly available at https://github.com/peijie-chiu/QC-ResUNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 67.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 84.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baid, U., et al.: The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv preprint arXiv:2107.02314 (2021)

  2. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(2) (2012)

    Google Scholar 

  3. Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C.: The importance of skip connections in biomedical image segmentation. In: Carneiro, G., et al. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 179–187. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46976-8_19

    Chapter  Google Scholar 

  4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  5. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015)

    Google Scholar 

  6. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  7. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: Brain tumor segmentation and radiomics survival prediction: contribution to the BRATS 2017 challenge. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 287–297. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_25

    Chapter  Google Scholar 

  8. Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    Article  Google Scholar 

  9. Kofler, F., et al.: Deep quality estimation: creating surrogate models for human quality ratings. arXiv preprint arXiv:2205.10355 (2022)

  10. Kohlberger, T., Singh, V., Alvino, C., Bahlmann, C., Grady, L.: Evaluating segmentation error without ground truth. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7510, pp. 528–536. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33415-3_65

    Chapter  Google Scholar 

  11. Maas, A.L., Hannun, A.Y., Ng, A.Y., et al.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of the ICML, Atlanta, Georgia, USA, vol. 30, p. 3 (2013)

    Google Scholar 

  12. Robinson, R., et al.: Real-time prediction of segmentation quality. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 578–585. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_66

    Chapter  Google Scholar 

  13. Robinson, R., et al.: Automated quality control in image segmentation: application to the UK Biobank cardiovascular magnetic resonance imaging study. J. Cardiovasc. Magn. Reson. 21(1), 1–14 (2019)

    Article  Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  15. Tompson, J., Goroshin, R., Jain, A., LeCun, Y., Bregler, C.: Efficient object localization using convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 648–656 (2015)

    Google Scholar 

  16. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

  17. Valindria, V.V., et al.: Reverse classification accuracy: predicting segmentation performance in the absence of ground truth. IEEE Trans. Med. Imaging 36(8), 1597–1606 (2017)

    Article  Google Scholar 

  18. Wang, S., et al.: Deep generative model-based quality control for cardiac MRI segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 88–97. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_9

    Chapter  Google Scholar 

  19. Zhuge, Y., et al.: Brain tumor segmentation using holistically nested neural networks in MRI images. Med. Phys. 44(10), 5234–5243 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

All computations were supported by the Washington University Center for High Performance Computing, which was partially funded by NIH grants S10OD025200, 1S10RR022984-01A1, and 1S10OD018091-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peijie Qiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qiu, P., Chakrabarty, S., Nguyen, P., Ghosh, S.S., Sotiras, A. (2023). QCResUNet: Joint Subject-Level and Voxel-Level Prediction of Segmentation Quality. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14223. Springer, Cham. https://doi.org/10.1007/978-3-031-43901-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43901-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43900-1

  • Online ISBN: 978-3-031-43901-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics