Abstract
Dynamic contrast-enhanced (DCE) cardiac magnetic resonance imaging (CMRI) is a widely used modality for diagnosing myocardial blood flow (perfusion) abnormalities. During a typical free-breathing DCE-CMRI scan, close to 300 time-resolved images of myocardial perfusion are acquired at various contrast “wash in/out” phases. Manual segmentation of myocardial contours in each time-frame of a DCE image series can be tedious and time-consuming, particularly when non-rigid motion correction has failed or is unavailable. While deep neural networks (DNNs) have shown promise for analyzing DCE-CMRI datasets, a “dynamic quality control” (dQC) technique for reliably detecting failed segmentations is lacking. Here we propose a new space-time uncertainty metric as a dQC tool for DNN-based segmentation of free-breathing DCE-CMRI datasets by validating the proposed metric on an external dataset and establishing a human-in-the-loop framework to improve the segmentation results. In the proposed approach, we referred the top 10% most uncertain segmentations as detected by our dQC tool to the human expert for refinement. This approach resulted in a significant increase in the Dice score (p < 0.001) and a notable decrease in the number of images with failed segmentation (16.2% to 11.3%) whereas the alternative approach of randomly selecting the same number of segmentations for human referral did not achieve any significant improvement. Our results suggest that the proposed dQC framework has the potential to accurately identify poor-quality segmentations and may enable efficient DNN-based analysis of DCE-CMRI in a human-in-the-loop pipeline for clinical interpretation and reporting of dynamic CMRI datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bai, W., et al.: A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement: application to cardiac MR images. IEEE Trans. Med. Imaging 32(7), 1302–1315 (2013)
Budd, S., Robinson, E.C., Kainz, B.: A survey on active learning and human-in-the-loop deep learning for medical image analysis. Med. Image Anal. 71, 102062 (2021)
Chen, C., et al.: Improving the generalizability of convolutional neural network-based segmentation on CMR images. Front. Cardiovasc. Med. 7, 105 (2020)
Coupé, P., Manjón, J.V., Fonov, V., Pruessner, J., Robles, M., Collins, D.L.: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. Neuroimage 54(2), 940–954 (2011)
DeVries, T., Taylor, G.W.: Leveraging uncertainty estimates for predicting segmentation quality. arXiv preprint arXiv:1807.00502 (2018)
Fahmy, A.S., et al.: Three-dimensional deep convolutional neural networks for automated myocardial scar quantification in hypertrophic cardiomyopathy: a multicenter multivendor study. Radiology 294(1), 52–60 (2020)
Hann, E., et al.: Deep neural network ensemble for on-the-fly quality control-driven segmentation of cardiac MRI T1 mapping. Med. Image Anal. 71, 102029 (2021)
He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)
Hoebel, K., et al.: An exploration of uncertainty information for segmentation quality assessment. In: Medical Imaging 2020: Image Processing, vol. 11313, pp. 381–390. SPIE (2020)
Hou, L., Samaras, D., Kurc, T.M., Gao, Y., Davis, J.E., Saltz, J.H.: Patch-based convolutional neural network for whole slide tissue image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2424–2433 (2016)
Hundley, W.G., et al.: Society for cardiovascular magnetic resonance (SCMR) guidelines for reporting cardiovascular magnetic resonance examinations. J. Cardiovasc. Magn. Reson. 24(1), 1–26 (2022)
Kuo, W., Häne, C., Mukherjee, P., Malik, J., Yuh, E.L.: Expert-level detection of acute intracranial hemorrhage on head computed tomography using deep learning. Proc. Natl. Acad. Sci. 116(45), 22737–22745 (2019)
Lu, M.Y., Williamson, D.F., Chen, T.Y., Chen, R.J., Barbieri, M., Mahmood, F.: Data-efficient and weakly supervised computational pathology on whole-slide images. Nat. Biomed. Eng. 5(6), 555–570 (2021)
Mehrtash, A., Wells, W.M., Tempany, C.M., Abolmaesumi, P., Kapur, T.: Confidence calibration and predictive uncertainty estimation for deep medical image segmentation. IEEE Trans. Med. Imaging 39(12), 3868–3878 (2020)
Mozannar, H., Sontag, D.: Consistent estimators for learning to defer to an expert. In: International Conference on Machine Learning, pp. 7076–7087. PMLR (2020)
Ng, M., et al.: Estimating uncertainty in neural networks for cardiac MRI segmentation: a benchmark study. IEEE Trans. Biomed. Eng. 70(6), 1955–1966 (2019)
Puyol-Antón, E., et al.: Automated quantification of myocardial tissue characteristics from native T1 mapping using neural networks with uncertainty-based quality-control. J. Cardiovasc. Magn. Reson. 22, 1–15 (2020)
Rajpurkar, P., Lungren, M.P.: The current and future state of AI interpretation of medical images. N. Engl. J. Med. 388(21), 1981–1990 (2023)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Roy, A.G., Conjeti, S., Navab, N., Wachinger, C., Initiative, A.D.N., et al.: Bayesian QuickNAT: model uncertainty in deep whole-brain segmentation for structure-wise quality control. Neuroimage 195, 11–22 (2019)
Rudie, J.D., et al.: Three-dimensional U-Net convolutional neural network for detection and segmentation of intracranial metastases. Radiol. Artif. Intell. 3(3), e200204 (2021)
Sander, J., de Vos, B.D., Išgum, I.: Automatic segmentation with detection of local segmentation failures in cardiac MRI. Sci. Rep. 10(1), 21769 (2020)
Scannell, C.M., et al.: Deep-learning-based preprocessing for quantitative myocardial perfusion MRI. J. Magn. Reson. Imaging 51(6), 1689–1696 (2020)
Wang, G., Li, W., Aertsen, M., Deprest, J., Ourselin, S., Vercauteren, T.: Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks. Neurocomputing 338, 34–45 (2019)
Wickstrøm, K., Kampffmeyer, M., Jenssen, R.: Uncertainty and interpretability in convolutional neural networks for semantic segmentation of colorectal polyps. Med. Image Anal. 60, 101619 (2020)
Xue, H., et al.: Automated inline analysis of myocardial perfusion MRI with deep learning. Radiol. Artif. Intell. 2(6), e200009 (2020)
Yalcinkaya, D.M., Youssef, K., Heydari, B., Zamudio, L., Dharmakumar, R., Sharif, B.: Deep learning-based segmentation and uncertainty assessment for automated analysis of myocardial perfusion MRI datasets using patch-level training and advanced data augmentation. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 4072–4078. IEEE (2021). https://doi.org/10.1109/EMBC46164.2021.9629581
Youssef, K., et al.: A patch-wise deep learning approach for myocardial blood flow quantification with robustness to noise and nonrigid motion. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 4045–4051. IEEE (2021). https://doi.org/10.1109/EMBC46164.2021.9629630
Zhou, Z., et al.: First-pass myocardial perfusion MRI with reduced subendocardial dark-rim artifact using optimized cartesian sampling. J. Magn. Reson. Imaging 45(2), 542–555 (2017)
Acknowledgement
This work was supported by the NIH awards R01-HL153430 & R01-HL148788, and the Lilly Endowment INCITE award (PI: B. Sharif).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yalcinkaya, D.M. et al. (2023). Temporal Uncertainty Localization to Enable Human-in-the-Loop Analysis of Dynamic Contrast-Enhanced Cardiac MRI Datasets. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14222. Springer, Cham. https://doi.org/10.1007/978-3-031-43898-1_44
Download citation
DOI: https://doi.org/10.1007/978-3-031-43898-1_44
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43897-4
Online ISBN: 978-3-031-43898-1
eBook Packages: Computer ScienceComputer Science (R0)