[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

UAV Path Planning for Area Coverage and Energy Consumption in Oil and Gas Exploration Environment

  • Conference paper
  • First Online:
Computational Logistics (ICCL 2023)

Abstract

This paper proposes a model for unmanned aerial vehicles (UAV) grid-based coverage path planning, considering coverage completeness and energy consumption in complex environments with multiple obstacles. The work is inspired by the need for more efficient approaches to oil and gas exploration, but other application areas where UAVs can be used to explore unknown environments can also benefit from this work. An energy consumption model is proposed that considers acceleration, deceleration, and turning manoeuvres, as well as the distance to obstacles, to more accurately simulate the UAV’s movement in different environments. Three different environments are modelled: desert, forest, and jungle. The energy-aware coverage path planning algorithm implemented seeks to reduce the energy consumption of a single drone while increasing coverage completeness. The model implementation and experiments were performed in the ROS/Gazebo simulation software. Obtained results show that the algorithm performs very well, with the drone able to manoeuvre itself in a combination of hills, valleys, rugged terrain, and steep topography while balancing coverage and energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abubakar, R., et al.: Formation of magnetic minerals at hydrocarbon-generation conditions. Mar. Pet. Geol. 68, 509–519 (2015). https://doi.org/10.1016/j.marpetgeo.2015.10.003

  2. Aminzadeh, F., Dasgupta, S.: Geophysics for petroleum engineers: chapter 3. Fundamentals of Petroleum Geophysics, 1st edn, vol. 60, pp. 1–282. Elsevier Inc., UK (2013). ISBN: 978-0-444-50662-7

    Google Scholar 

  3. Araujo, J., Sujit, P., Sousa, J.: Multiple UAV area decomposition and coverage. In: 2013 IEEE Symposium on Computational Intelligence for Security and Defense Applications (CISDA), pp. 30–37 (2013). https://doi.org/10.1109/CISDA.2013.6595424

  4. Bähnemann, R., Lawrance, N., Chung, J., Pantic, M., Siegwart, R., Nieto, J.: Revisiting boustrophedon coverage path planning as a generalized traveling salesman problem. In: Ishigami, G., Yoshida, K. (eds.) Field and Service Robotics. Springer Proceedings in Advanced Robotics, vol. 16, pp. 277–290. Springer, Singapore (2021). ISBN: 978-981-15-9459-5. https://doi.org/10.1007/978-981-15-9460-1_20

  5. Cabreira, T.M., Brisolara, L.B., Paulo R, F.J.: Survey on coverage path planning with unmanned aerial vehicles. Drones 3(1) (2019). https://doi.org/10.3390/drones3010004

  6. Cabreira, T., Franco, C., Ferreira, P., Buttazzo, G.: Energy-aware spiral coverage path planning for UAV photogrammetric applications. IEEE Robot. Autom. Lett. 3(4), 3662–3668 (2018). https://doi.org/10.1109/LRA.2018.2854967

  7. Cabreira, T., Ferreira, P., Di Franco, G. Buttazzo, C.: Grid-based coverage path planning with minimum energy over irregular-shaped areas with UAVs. In: 2019 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 758–767, (2019). https://doi.org/10.1109/ICUAS.2019.8797937

  8. Cai, C., Ferrari, S.: Information-driven sensor path planning by approximate cell decomposition. IEEE Trans. Syst. Man Cybern. Part B 39(3), 672–689 (2009). https://doi.org/10.1109/TSMCB.2008.2008561

  9. Choset, H., Acar, E., Rizzi, A., Luntz, J.: Exact cellular decompositions in terms of critical points of Morse functions. In: Proceedings ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings, vol. 3, pp. 2270–2277, USA (2000). https://doi.org/10.1109/ROBOT.2000.846365

  10. Choset, H., Pignon, P.: Coverage path planning: the boustrophedon cellular decomposition. In: Field and Service Robotics, pp. 203–209 (1998). ISBN: 978-1-4471-1275-4

    Google Scholar 

  11. Choton, C., Prabhakar, P.: Optimal multi-robot coverage path planning for agricultural fields using motion dynamics. In: 2023 IEEE International Conference on Robotics and Automation(ICRA), pp. 11817–11823. IEEE (2023). https://doi.org/10.1109/ICRA48891.2023.10160265

  12. Dou, L., et al.: Analysis of the world oil and gas exploration situation in 2021. Pet. Explor. Dev. 49(5), 1195–1209 (2022). https://doi.org/10.1016/S1876-3804(22)60343-4

  13. Duan, L., Wang, J. and Sun, Y.: Multi-robot online complete coverage based on collaboration. In: Yang, S., Islam, S. (eds.) Web and Big Data. APWeb-WAIM 2022 International Workshops. APWeb-WAIM 2022. CCIS, vol. 1784, pp. 219–231. Springer, Singapore (2023). https://doi.org/10.1007/978-981-99-1354-1_19

  14. Engelsons, D., Tiger, M., Heintz, F.: Coverage path planning in large-scale multi-floor urban environments with applications to autonomous road sweeping, In: 2022 International Conference on Robotics and Automation (ICRA), pp. 3328–3334 (2022). “https://doi.org/10.1109/ICRA46639.2022.9811941

  15. Franco, C., Buttazzo, G.: Energy-aware coverage path planning of UAVs. In: 2015 IEEE International Conference on Autonomous Robot Systems and Competitions, pp. 111–117 (2015). https://doi.org/10.1109/ICARSC.2015.17

  16. Franco, C., Buttazzo, G.: Coverage path planning for UAVs photogrammetry with energy and resolution constraints. J. Intell. Robot. Syst. 83(3), 445–462 (2016). https://doi.org/10.1007/s10846-016-0348-x

    Article  Google Scholar 

  17. Frew, E., Argrow, B., Houston, A., Weiss, C., Elston, J.: An energy-aware airborne dynamic data-driven application system for persistent sampling and surveillance. Procedia Comput. Sci. 18, 2008–2017 (2013). https://doi.org/10.1016/j.procs.2013.05.370

    Article  Google Scholar 

  18. Galceran, E., Carreras, M.: A survey on coverage path planning for robotics. Robot. Auton. Syst. 61(12), 1258–1276 (2013). https://doi.org/10.1016/j.robot.2013.09.004

  19. Gallego, A., Pertusa, A., Gil, P., Fisher, R.: Detection of bodies in maritime rescue operations using unmanned aerial vehicles with multispectral cameras. J. Field Robot. 36(4), 782–796 (2019). https://doi.org/10.1002/rob.21849

  20. Ghaddar, A., Merei, A., Natalizio, E.: PPS: energy-aware grid-based coverage path planning for UAVs using area partitioning in the presence of NFZs. Sensors 20(13) (2020). https://doi.org/10.3390/s20133742

  21. Guruprasad, K., Ranjitha, T.: CPC algorithm: exact area coverage by a mobile robot using approximate cellular decomposition. Robotica 39(7), 1141–1162 (2021). https://doi.org/10.1017/S026357472000096X

  22. GvdHoorn, slam_gmapping, gmapping, 2019. http://wiki.ros.org/gmapping. Accessed 07 Mar 2023

  23. Jensen-Nau, K., Hermans, R, Leang, T., Leang, K.: Near-optimal area-coverage path planning of energy-constrained aerial robots with application in autonomous environmental monitoring. IEEE Trans. Autom. Sci. Eng. 18(3), 1453–1468. IEEE (2020). https://doi.org/10.1109/TASE.2020.301627

  24. John, R., Current, Schilling, D.: The covering salesman problem. Transp. Sci. 23(3), 208–213 (1989). https://doi.org/10.1287/trsc.23.3.208

  25. Jones, C.M.: The oil and gas industry must break the paradigm of the current exploration model. J. Pet. Explor. Prod. Technol. 8(1), 131–142 (2017). https://doi.org/10.1007/s13202-017-0395-2

    Article  Google Scholar 

  26. Kuru, K., Ansell, D., Khan, W., Yetgin, H.: Analysis and optimization of unmanned aerial vehicle swarms in logistics: an intelligent delivery platform. IEEE Access 7, 15804–15831 (2019). https://doi.org/10.1109/ACCESS.2019.2892716

  27. Kyaw, P., Paing, A., Thu, T., Mohan, R., Le, A., x Veerajagadheswar, A.: Coverage path planning for decomposition reconfigurable grid-maps using deep reinforcement learning based travelling salesman problem. IEEE Access 8, 225945–225956 (2020). https://doi.org/10.1109/ACCESS.2020.3045027

  28. Li, Y., Chen, H., Er, M., Wang, X.: Coverage path planning for UAVs based on enhanced exact cellular decomposition method. Mechatronics 21(5), 876–885 (2011). https://doi.org/10.1016/j.mechatronics.2010.10.009

  29. Merz, M., Pedro, D., Skliros. V., Bergenhem, C. Himanka, M.: Autonomous UAS-based agriculture applications: general overview and relevant European case studies, Drones. MDPI 6(5), 128 (2022). https://doi.org/10.3390/drones6050128

  30. Mukhamediev, R., et al.: Coverage path planning optimization of heterogeneous UAVs group for precision agriculture. IEEE Access 11, 5789–5803 (2023). https://doi.org/10.1109/ACCESS.2023.3235207

  31. Murugan, D., Garg, A., Singh, D.: Development of an adaptive approach for precision agriculture monitoring with drone and satellite data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10(12), 5322–5328 (2017). https://doi.org/10.1109/JSTARS.2017.2746185

  32. Odonkor, P., Ball, Z., Chowdhury, S.: Distributed operation of collaborating unmanned aerial vehicles for time-sensitive oil spill mapping, Swarm Evol. Comput. 46, 52–68, (2019). https://doi.org/10.1016/j.swevo.2019.01.005

  33. Rafalamao, hector-quadrotor-noetic. https://github.com/RAFALAMAO/hector-quadrotor-noetic. Accessed 7 Mar 2023

  34. Rezazadeh, J., Moradi, M., Ismail, A., Dutkiewicz, E.: Impact of static trajectories on localization in wireless sensor networks. Wirel. Netw. 21, 809–827. Springer (2015). https://doi.org/10.1007/s11276-014-0821-z

  35. Sarvesh, A., Carroll, A., Gopalswamy, S.: Reshaping local path planner. IEEE Robot. Autom. Lett. 7(3), 6534–6541 (2022). https://doi.org/10.1109/LRA.2022.3174366

  36. Shivgan, R., Dong, Z.: Energy-efficient drone coverage path planning using genetic algorithm. In: 2020 IEEE 21st International Conference on High Performance Switching and Routing (HPSR), pp. 1–6 (2020). https://doi.org/10.1109/HPSR48589.2020.9098989

  37. Shukla, A., Karki, H.: Application of robotics in onshore oil and gas industry—a review Part I. Rob. Auton. Syst. 75, 490–507 (2016). https://doi.org/10.1016/j.robot.2015.09.012

  38. Shukla, A., Karki, H.: New Frontiers in Oil and Gas Exploration, 1st edn. Springer, Cham (2016). ISBN: 978-3-319-40122-5. https://doi.org/10.1007/978-3-319-40124-9

  39. Strimel, G., Veloso, M., Coverage planning with finite resources. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2950–2956 (2014). https://doi.org/10.1109/IROS.2014.6942969

  40. Tan, C., Mohd-Mokhtar, R., Arshad, M.: A comprehensive review of coverage path planning in robotics using classical and heuristic algorithms, IEEE Access (2021). https://doi.org/10.1109/ACCESS.2021.3108177

  41. Torres, M., Pelta, D., Verdegay, J., x Torres, J.: Coverage path planning with unmanned aerial vehicles for 3D terrain reconstruction, Expert Syst. Appl. 55, 441–451 (2016). https://doi.org/10.1016/j.eswa.2016.02.007

  42. Vadim, T., Alexander, P., Vasily, A., Dmitry, K.: Unmanned airborne magnetic survey technologies: present and future. In: Nurgaliev, D., Shcherbakov, V., Kosterov, A., Spassov, S. (eds.) Recent Advances in Rock Magnetism, Environmental Magnetism and Paleomagnetism, pp. 523–534. Springer Geophysics. Springer, Cham (2019). ISBN:978-3-319-90436-8. https://doi.org/10.1007/978-3-319-90437-5_36

  43. Valente, J., Sanz, D., Del Cerro, J., Barrientos, A., de Frutos, M.: Near-optimal coverage trajectories for image mosaicing using a mini quadrotor over irregular-shaped fields. Precis. Agric. 14, 115–132 (2013). https://doi.org/10.1007/s11119-012-9287-0

  44. Wenceslao, E., Shaw-Cortez, Frew, E.: Efficient trajectory development for small unmanned aircraft dynamic soaring applications. J. Guid. Control Dyn. 38(3), 519–523 (2015). https://doi.org/10.2514/1.G000543s

  45. Wu, C., Dai, C., Gong, X., Liu, Y., Wang, J., Gu, X., Wang, C.: Energy-efficient coverage path planning for general terrain surfaces. IEEE Robot. Autom. Lett. 4(3), 2584–2591 (2019). https://doi.org/10.1109/LRA.2019.2899920

  46. Xie, J., Carrillo, L., Jin, L.: An integrated traveling salesman and coverage path planning problem for unmanned aircraft systems. IEEE Control Syst. Lett. 3(1), 67–72 (2018). https://doi.org/10.1109/LCSYS.2018.2851661

  47. Xu, A., Viriyasuthee, C., Rekleitis, I.: Optimal complete terrain coverage using an unmanned aerial vehicle. In: 2011 IEEE International Conference on Robotics and Automation, pp. 2513–2519 (2011). https://doi.org/10.1109/ICRA.2011.5979707

  48. Zheng, Y., Li, S., Xing, K., Zhang, X.: Unmanned aerial vehicles for magnetic surveys: a review on platform selection and interference suppression. Drones 5(3), 93 (2021). https://doi.org/10.3390/drones5030093

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salim Sulaiman Maaji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maaji, S.S., Landa-Silva, D. (2023). UAV Path Planning for Area Coverage and Energy Consumption in Oil and Gas Exploration Environment. In: Daduna, J.R., Liedtke, G., Shi, X., Voß, S. (eds) Computational Logistics. ICCL 2023. Lecture Notes in Computer Science, vol 14239. Springer, Cham. https://doi.org/10.1007/978-3-031-43612-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43612-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43611-6

  • Online ISBN: 978-3-031-43612-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics