Abstract
This paper proposes a model for unmanned aerial vehicles (UAV) grid-based coverage path planning, considering coverage completeness and energy consumption in complex environments with multiple obstacles. The work is inspired by the need for more efficient approaches to oil and gas exploration, but other application areas where UAVs can be used to explore unknown environments can also benefit from this work. An energy consumption model is proposed that considers acceleration, deceleration, and turning manoeuvres, as well as the distance to obstacles, to more accurately simulate the UAV’s movement in different environments. Three different environments are modelled: desert, forest, and jungle. The energy-aware coverage path planning algorithm implemented seeks to reduce the energy consumption of a single drone while increasing coverage completeness. The model implementation and experiments were performed in the ROS/Gazebo simulation software. Obtained results show that the algorithm performs very well, with the drone able to manoeuvre itself in a combination of hills, valleys, rugged terrain, and steep topography while balancing coverage and energy consumption.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abubakar, R., et al.: Formation of magnetic minerals at hydrocarbon-generation conditions. Mar. Pet. Geol. 68, 509–519 (2015). https://doi.org/10.1016/j.marpetgeo.2015.10.003
Aminzadeh, F., Dasgupta, S.: Geophysics for petroleum engineers: chapter 3. Fundamentals of Petroleum Geophysics, 1st edn, vol. 60, pp. 1–282. Elsevier Inc., UK (2013). ISBN: 978-0-444-50662-7
Araujo, J., Sujit, P., Sousa, J.: Multiple UAV area decomposition and coverage. In: 2013 IEEE Symposium on Computational Intelligence for Security and Defense Applications (CISDA), pp. 30–37 (2013). https://doi.org/10.1109/CISDA.2013.6595424
Bähnemann, R., Lawrance, N., Chung, J., Pantic, M., Siegwart, R., Nieto, J.: Revisiting boustrophedon coverage path planning as a generalized traveling salesman problem. In: Ishigami, G., Yoshida, K. (eds.) Field and Service Robotics. Springer Proceedings in Advanced Robotics, vol. 16, pp. 277–290. Springer, Singapore (2021). ISBN: 978-981-15-9459-5. https://doi.org/10.1007/978-981-15-9460-1_20
Cabreira, T.M., Brisolara, L.B., Paulo R, F.J.: Survey on coverage path planning with unmanned aerial vehicles. Drones 3(1) (2019). https://doi.org/10.3390/drones3010004
Cabreira, T., Franco, C., Ferreira, P., Buttazzo, G.: Energy-aware spiral coverage path planning for UAV photogrammetric applications. IEEE Robot. Autom. Lett. 3(4), 3662–3668 (2018). https://doi.org/10.1109/LRA.2018.2854967
Cabreira, T., Ferreira, P., Di Franco, G. Buttazzo, C.: Grid-based coverage path planning with minimum energy over irregular-shaped areas with UAVs. In: 2019 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 758–767, (2019). https://doi.org/10.1109/ICUAS.2019.8797937
Cai, C., Ferrari, S.: Information-driven sensor path planning by approximate cell decomposition. IEEE Trans. Syst. Man Cybern. Part B 39(3), 672–689 (2009). https://doi.org/10.1109/TSMCB.2008.2008561
Choset, H., Acar, E., Rizzi, A., Luntz, J.: Exact cellular decompositions in terms of critical points of Morse functions. In: Proceedings ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings, vol. 3, pp. 2270–2277, USA (2000). https://doi.org/10.1109/ROBOT.2000.846365
Choset, H., Pignon, P.: Coverage path planning: the boustrophedon cellular decomposition. In: Field and Service Robotics, pp. 203–209 (1998). ISBN: 978-1-4471-1275-4
Choton, C., Prabhakar, P.: Optimal multi-robot coverage path planning for agricultural fields using motion dynamics. In: 2023 IEEE International Conference on Robotics and Automation(ICRA), pp. 11817–11823. IEEE (2023). https://doi.org/10.1109/ICRA48891.2023.10160265
Dou, L., et al.: Analysis of the world oil and gas exploration situation in 2021. Pet. Explor. Dev. 49(5), 1195–1209 (2022). https://doi.org/10.1016/S1876-3804(22)60343-4
Duan, L., Wang, J. and Sun, Y.: Multi-robot online complete coverage based on collaboration. In: Yang, S., Islam, S. (eds.) Web and Big Data. APWeb-WAIM 2022 International Workshops. APWeb-WAIM 2022. CCIS, vol. 1784, pp. 219–231. Springer, Singapore (2023). https://doi.org/10.1007/978-981-99-1354-1_19
Engelsons, D., Tiger, M., Heintz, F.: Coverage path planning in large-scale multi-floor urban environments with applications to autonomous road sweeping, In: 2022 International Conference on Robotics and Automation (ICRA), pp. 3328–3334 (2022). “https://doi.org/10.1109/ICRA46639.2022.9811941”
Franco, C., Buttazzo, G.: Energy-aware coverage path planning of UAVs. In: 2015 IEEE International Conference on Autonomous Robot Systems and Competitions, pp. 111–117 (2015). https://doi.org/10.1109/ICARSC.2015.17
Franco, C., Buttazzo, G.: Coverage path planning for UAVs photogrammetry with energy and resolution constraints. J. Intell. Robot. Syst. 83(3), 445–462 (2016). https://doi.org/10.1007/s10846-016-0348-x
Frew, E., Argrow, B., Houston, A., Weiss, C., Elston, J.: An energy-aware airborne dynamic data-driven application system for persistent sampling and surveillance. Procedia Comput. Sci. 18, 2008–2017 (2013). https://doi.org/10.1016/j.procs.2013.05.370
Galceran, E., Carreras, M.: A survey on coverage path planning for robotics. Robot. Auton. Syst. 61(12), 1258–1276 (2013). https://doi.org/10.1016/j.robot.2013.09.004
Gallego, A., Pertusa, A., Gil, P., Fisher, R.: Detection of bodies in maritime rescue operations using unmanned aerial vehicles with multispectral cameras. J. Field Robot. 36(4), 782–796 (2019). https://doi.org/10.1002/rob.21849
Ghaddar, A., Merei, A., Natalizio, E.: PPS: energy-aware grid-based coverage path planning for UAVs using area partitioning in the presence of NFZs. Sensors 20(13) (2020). https://doi.org/10.3390/s20133742
Guruprasad, K., Ranjitha, T.: CPC algorithm: exact area coverage by a mobile robot using approximate cellular decomposition. Robotica 39(7), 1141–1162 (2021). https://doi.org/10.1017/S026357472000096X
GvdHoorn, slam_gmapping, gmapping, 2019. http://wiki.ros.org/gmapping. Accessed 07 Mar 2023
Jensen-Nau, K., Hermans, R, Leang, T., Leang, K.: Near-optimal area-coverage path planning of energy-constrained aerial robots with application in autonomous environmental monitoring. IEEE Trans. Autom. Sci. Eng. 18(3), 1453–1468. IEEE (2020). https://doi.org/10.1109/TASE.2020.301627
John, R., Current, Schilling, D.: The covering salesman problem. Transp. Sci. 23(3), 208–213 (1989). https://doi.org/10.1287/trsc.23.3.208
Jones, C.M.: The oil and gas industry must break the paradigm of the current exploration model. J. Pet. Explor. Prod. Technol. 8(1), 131–142 (2017). https://doi.org/10.1007/s13202-017-0395-2
Kuru, K., Ansell, D., Khan, W., Yetgin, H.: Analysis and optimization of unmanned aerial vehicle swarms in logistics: an intelligent delivery platform. IEEE Access 7, 15804–15831 (2019). https://doi.org/10.1109/ACCESS.2019.2892716
Kyaw, P., Paing, A., Thu, T., Mohan, R., Le, A., x Veerajagadheswar, A.: Coverage path planning for decomposition reconfigurable grid-maps using deep reinforcement learning based travelling salesman problem. IEEE Access 8, 225945–225956 (2020). https://doi.org/10.1109/ACCESS.2020.3045027
Li, Y., Chen, H., Er, M., Wang, X.: Coverage path planning for UAVs based on enhanced exact cellular decomposition method. Mechatronics 21(5), 876–885 (2011). https://doi.org/10.1016/j.mechatronics.2010.10.009
Merz, M., Pedro, D., Skliros. V., Bergenhem, C. Himanka, M.: Autonomous UAS-based agriculture applications: general overview and relevant European case studies, Drones. MDPI 6(5), 128 (2022). https://doi.org/10.3390/drones6050128
Mukhamediev, R., et al.: Coverage path planning optimization of heterogeneous UAVs group for precision agriculture. IEEE Access 11, 5789–5803 (2023). https://doi.org/10.1109/ACCESS.2023.3235207
Murugan, D., Garg, A., Singh, D.: Development of an adaptive approach for precision agriculture monitoring with drone and satellite data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10(12), 5322–5328 (2017). https://doi.org/10.1109/JSTARS.2017.2746185
Odonkor, P., Ball, Z., Chowdhury, S.: Distributed operation of collaborating unmanned aerial vehicles for time-sensitive oil spill mapping, Swarm Evol. Comput. 46, 52–68, (2019). https://doi.org/10.1016/j.swevo.2019.01.005
Rafalamao, hector-quadrotor-noetic. https://github.com/RAFALAMAO/hector-quadrotor-noetic. Accessed 7 Mar 2023
Rezazadeh, J., Moradi, M., Ismail, A., Dutkiewicz, E.: Impact of static trajectories on localization in wireless sensor networks. Wirel. Netw. 21, 809–827. Springer (2015). https://doi.org/10.1007/s11276-014-0821-z
Sarvesh, A., Carroll, A., Gopalswamy, S.: Reshaping local path planner. IEEE Robot. Autom. Lett. 7(3), 6534–6541 (2022). https://doi.org/10.1109/LRA.2022.3174366
Shivgan, R., Dong, Z.: Energy-efficient drone coverage path planning using genetic algorithm. In: 2020 IEEE 21st International Conference on High Performance Switching and Routing (HPSR), pp. 1–6 (2020). https://doi.org/10.1109/HPSR48589.2020.9098989”
Shukla, A., Karki, H.: Application of robotics in onshore oil and gas industry—a review Part I. Rob. Auton. Syst. 75, 490–507 (2016). https://doi.org/10.1016/j.robot.2015.09.012
Shukla, A., Karki, H.: New Frontiers in Oil and Gas Exploration, 1st edn. Springer, Cham (2016). ISBN: 978-3-319-40122-5. https://doi.org/10.1007/978-3-319-40124-9
Strimel, G., Veloso, M., Coverage planning with finite resources. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2950–2956 (2014). https://doi.org/10.1109/IROS.2014.6942969
Tan, C., Mohd-Mokhtar, R., Arshad, M.: A comprehensive review of coverage path planning in robotics using classical and heuristic algorithms, IEEE Access (2021). https://doi.org/10.1109/ACCESS.2021.3108177
Torres, M., Pelta, D., Verdegay, J., x Torres, J.: Coverage path planning with unmanned aerial vehicles for 3D terrain reconstruction, Expert Syst. Appl. 55, 441–451 (2016). https://doi.org/10.1016/j.eswa.2016.02.007
Vadim, T., Alexander, P., Vasily, A., Dmitry, K.: Unmanned airborne magnetic survey technologies: present and future. In: Nurgaliev, D., Shcherbakov, V., Kosterov, A., Spassov, S. (eds.) Recent Advances in Rock Magnetism, Environmental Magnetism and Paleomagnetism, pp. 523–534. Springer Geophysics. Springer, Cham (2019). ISBN:978-3-319-90436-8. https://doi.org/10.1007/978-3-319-90437-5_36
Valente, J., Sanz, D., Del Cerro, J., Barrientos, A., de Frutos, M.: Near-optimal coverage trajectories for image mosaicing using a mini quadrotor over irregular-shaped fields. Precis. Agric. 14, 115–132 (2013). https://doi.org/10.1007/s11119-012-9287-0
Wenceslao, E., Shaw-Cortez, Frew, E.: Efficient trajectory development for small unmanned aircraft dynamic soaring applications. J. Guid. Control Dyn. 38(3), 519–523 (2015). https://doi.org/10.2514/1.G000543s
Wu, C., Dai, C., Gong, X., Liu, Y., Wang, J., Gu, X., Wang, C.: Energy-efficient coverage path planning for general terrain surfaces. IEEE Robot. Autom. Lett. 4(3), 2584–2591 (2019). https://doi.org/10.1109/LRA.2019.2899920
Xie, J., Carrillo, L., Jin, L.: An integrated traveling salesman and coverage path planning problem for unmanned aircraft systems. IEEE Control Syst. Lett. 3(1), 67–72 (2018). https://doi.org/10.1109/LCSYS.2018.2851661
Xu, A., Viriyasuthee, C., Rekleitis, I.: Optimal complete terrain coverage using an unmanned aerial vehicle. In: 2011 IEEE International Conference on Robotics and Automation, pp. 2513–2519 (2011). https://doi.org/10.1109/ICRA.2011.5979707
Zheng, Y., Li, S., Xing, K., Zhang, X.: Unmanned aerial vehicles for magnetic surveys: a review on platform selection and interference suppression. Drones 5(3), 93 (2021). https://doi.org/10.3390/drones5030093
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Maaji, S.S., Landa-Silva, D. (2023). UAV Path Planning for Area Coverage and Energy Consumption in Oil and Gas Exploration Environment. In: Daduna, J.R., Liedtke, G., Shi, X., Voß, S. (eds) Computational Logistics. ICCL 2023. Lecture Notes in Computer Science, vol 14239. Springer, Cham. https://doi.org/10.1007/978-3-031-43612-3_29
Download citation
DOI: https://doi.org/10.1007/978-3-031-43612-3_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43611-6
Online ISBN: 978-3-031-43612-3
eBook Packages: Computer ScienceComputer Science (R0)