[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Categorical Approximation Fixpoint Theory

  • Conference paper
  • First Online:
Logics in Artificial Intelligence (JELIA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14281))

Included in the following conference series:

  • 581 Accesses

Abstract

Approximation fixpoint theory (AFT) is a powerful framework that has been widely used for defining the semantics of non-monotonic formalisms in artificial intelligence and logic programming. In particular, AFT is used to derive the fixed points of (potentially non-monotonic) operators over complete lattices. However, in certain application domains, there arise operators defined over structures that are not necessarily complete lattices. Therefore, the quest for a more general version of AFT has been lingering as an interesting research direction. We develop an extension of AFT, namely Categorical AFT, that allows us to study the fixed points of (potentially non-functorial) operators defined over categories. Since categories are more general structures than complete lattices, we argue that our approach provides a more general and unified framework for the study of non-monotonicity. The versatility of category theory creates the potential of new insights and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abramsky, S., Jung, A.: Domain Theory, pp. 1–168. Oxford University Press Inc. (1995)

    Google Scholar 

  2. Adámek, J.: Recursive data types in algebraically omega-complete categories. Inf. Comput. 118(2), 181–190 (1995). https://doi.org/10.1006/inco.1995.1061

    Article  MathSciNet  MATH  Google Scholar 

  3. Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories - The Joy of Cats. Dover Publications (2009)

    Google Scholar 

  4. Adámek, J., Koubek, V.: Least fixed point of a functor. J. Comput. Syst. Sci. 19(2), 163–178 (1979). https://doi.org/10.1016/0022-0000(79)90026-6

    Article  MathSciNet  MATH  Google Scholar 

  5. Adámek, J., Milius, S., Moss, L.S.: Fixed points of functors. J. Log. Algebraic Methods Program. 95, 41–81 (2018). https://doi.org/10.1016/j.jlamp.2017.11.003

    Article  MathSciNet  Google Scholar 

  6. Adámek, J.: Free algebras and automata realizations in the language of categories. Comment. Math. Univ. Carol. 015(4), 589–602 (1974)

    MathSciNet  MATH  Google Scholar 

  7. Antić, C., Eiter, T., Fink, M.: Hex semantics via approximation fixpoint theory. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS (LNAI), vol. 8148, pp. 102–115. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40564-8_11

    Chapter  Google Scholar 

  8. Barr, M.: Algebraically compact functors. J. Pure Appl. Algebra 82(3), 211–231 (1992). https://doi.org/10.1016/0022-4049(92)90169-G

    Article  MathSciNet  MATH  Google Scholar 

  9. Bos, R., Hemerik, C.: An Introduction to the Category-Theoretic Solution of Recursive Domain Equations. Computing Science Notes. Technische Universiteit Eindhoven (1988)

    Google Scholar 

  10. Charalambidis, A., Ésik, Z., Rondogiannis, P.: Minimum model semantics for extensional higher-order logic programming with negation. Theory Pract. Log. Program. 14(4–5), 725–737 (2014). https://doi.org/10.1017/S1471068414000313

    Article  MathSciNet  MATH  Google Scholar 

  11. Charalambidis, A., Rondogiannis, P., Symeonidou, I.: Approximation fixpoint theory and the well-founded semantics of higher-order logic programs. Theory Pract. Log. Program. 18(3–4), 421–437 (2018). https://doi.org/10.1017/S1471068418000108

    Article  MathSciNet  MATH  Google Scholar 

  12. Dasseville, I., van der Hallen, M., Bogaerts, B., Janssens, G., Denecker, M.: A compositional typed higher-order logic with definitions. In: Carro, M., King, A., Saeedloei, N., Vos, M.D. (eds.) Technical Communications of the 32nd International Conference on Logic Programming, ICLP 2016 TCs, New York City, USA, 16–21 October 2016. OASIcs, vol. 52, pp. 14:1–14:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016). https://doi.org/10.4230/OASIcs.ICLP.2016.14

  13. Denecker, M., Bruynooghe, M., Vennekens, J.: Approximation fixpoint theory and the semantics of logic and answers set programs. In: Erdem, E., Lee, J., Lierler, Y., Pearce, D. (eds.) Correct Reasoning. LNCS, vol. 7265, pp. 178–194. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30743-0_13

    Chapter  Google Scholar 

  14. Denecker, M., Marek, V., Truszczyński, M.: Approximations, stable operators, well-founded fixpoints and applications in nonmonotonic reasoning. In: Minker, J. (ed.) Logic-Based Artificial Intelligence, pp. 127–144. Kluwer Academic Publishers, Dordrecht (2000)

    Chapter  Google Scholar 

  15. Denecker, M., Marek, V.W., Truszczynski, M.: Ultimate approximation and its application in nonmonotonic knowledge representation systems. Inf. Comput. 192(1), 84–121 (2004). https://doi.org/10.1016/j.ic.2004.02.004

    Article  MathSciNet  MATH  Google Scholar 

  16. Fitting, M.: Fixpoint semantics for logic programming: a survey. Theor. Comput. Sci. 278(1–2), 25–51 (2002). https://doi.org/10.1016/S0304-3975(00)00330-3

    Article  MathSciNet  MATH  Google Scholar 

  17. Frisch, A., Castagna, G., Benzaken, V.: Semantic subtyping: dealing set-theoretically with function, union, intersection, and negation types. J. ACM 55(4), 19:1–19:64 (2008). https://doi.org/10.1145/1391289.1391293

  18. Gunter, C.A.: Semantics of Programming Languages - Structures and Techniques. Foundations of Computing. MIT Press (1993)

    Google Scholar 

  19. Liu, F., Bi, Y., Chowdhury, M.S., You, J.-H., Feng, Z.: Flexible approximators for approximating fixpoint theory. In: Khoury, R., Drummond, C. (eds.) AI 2016. LNCS (LNAI), vol. 9673, pp. 224–236. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34111-8_28

    Chapter  Google Scholar 

  20. Liu, F., You, J.: Alternating fixpoint operator for hybrid MKNF knowledge bases as an approximator of AFT. Theory Pract. Log. Program. 22(2), 305–334 (2022). https://doi.org/10.1017/S1471068421000168

    Article  MathSciNet  Google Scholar 

  21. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg (1987). https://doi.org/10.1007/978-3-642-83189-8

    Book  MATH  Google Scholar 

  22. Pelov, N., Denecker, M., Bruynooghe, M.: Well-founded and stable semantics of logic programs with aggregates. Theory Pract. Log. Program. 7(3), 301–353 (2007). https://doi.org/10.1017/S1471068406002973

    Article  MathSciNet  MATH  Google Scholar 

  23. Pierce, B.C.: Basic Category Theory for Computer Scientists. Foundations of Computing. MIT Press (1991)

    Google Scholar 

  24. Rondogiannis, P., Symeonidou, I.: The intricacies of three-valued extensional semantics for higher-order logic programs. Theory Pract. Log. Program. 17(5–6), 974–991 (2017). https://doi.org/10.1017/S1471068417000357

    Article  MathSciNet  MATH  Google Scholar 

  25. Rondogiannis, P., Symeonidou, I.: Extensional semantics for higher-order logic programs with negation. Log. Methods Comput. Sci. 14(2) (2018). https://doi.org/10.23638/LMCS-14(2:19)2018

  26. Schmidt, D.A.: Denotational Semantics: A Methodology for Language Development. William C. Brown Publishers (1986)

    Google Scholar 

  27. Smyth, M.B., Plotkin, G.D.: The category-theoretic solution of recursive domain equations. SIAM J. Comput. 11(4), 761–783 (1982). https://doi.org/10.1137/0211062

    Article  MathSciNet  MATH  Google Scholar 

  28. Stoy, J.E.: Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory. MIT Press, Cambridge (1977)

    MATH  Google Scholar 

  29. Strass, H., Wallner, J.P.: Analyzing the computational complexity of abstract dialectical frameworks via approximation fixpoint theory. Artif. Intell. 226, 34–74 (2015). https://doi.org/10.1016/j.artint.2015.05.003

    Article  MathSciNet  MATH  Google Scholar 

  30. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math. 5(2), 285–309 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tennent, R.D.: Semantics of Programming Languages. Prentice Hall International Series in Computer Science. Prentice Hall (1991)

    Google Scholar 

  32. Vennekens, J., Gilis, D., Denecker, M.: Splitting an operator: algebraic modularity results for logics with fixpoint semantics. ACM Trans. Comput. Log. 7(4), 765–797 (2006). https://doi.org/10.1145/1183278.1183284

    Article  MathSciNet  MATH  Google Scholar 

  33. Wand, M.: Fixed-point constructions in order-enriched categories. Theor. Comput. Sci. 8, 13–30 (1979). https://doi.org/10.1016/0304-3975(79)90053-7

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelos Charalambidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Charalambidis, A., Rondogiannis, P. (2023). Categorical Approximation Fixpoint Theory. In: Gaggl, S., Martinez, M.V., Ortiz, M. (eds) Logics in Artificial Intelligence. JELIA 2023. Lecture Notes in Computer Science(), vol 14281. Springer, Cham. https://doi.org/10.1007/978-3-031-43619-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43619-2_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43618-5

  • Online ISBN: 978-3-031-43619-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics