Abstract
Approximation fixpoint theory (AFT) is a powerful framework that has been widely used for defining the semantics of non-monotonic formalisms in artificial intelligence and logic programming. In particular, AFT is used to derive the fixed points of (potentially non-monotonic) operators over complete lattices. However, in certain application domains, there arise operators defined over structures that are not necessarily complete lattices. Therefore, the quest for a more general version of AFT has been lingering as an interesting research direction. We develop an extension of AFT, namely Categorical AFT, that allows us to study the fixed points of (potentially non-functorial) operators defined over categories. Since categories are more general structures than complete lattices, we argue that our approach provides a more general and unified framework for the study of non-monotonicity. The versatility of category theory creates the potential of new insights and applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abramsky, S., Jung, A.: Domain Theory, pp. 1–168. Oxford University Press Inc. (1995)
Adámek, J.: Recursive data types in algebraically omega-complete categories. Inf. Comput. 118(2), 181–190 (1995). https://doi.org/10.1006/inco.1995.1061
Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories - The Joy of Cats. Dover Publications (2009)
Adámek, J., Koubek, V.: Least fixed point of a functor. J. Comput. Syst. Sci. 19(2), 163–178 (1979). https://doi.org/10.1016/0022-0000(79)90026-6
Adámek, J., Milius, S., Moss, L.S.: Fixed points of functors. J. Log. Algebraic Methods Program. 95, 41–81 (2018). https://doi.org/10.1016/j.jlamp.2017.11.003
Adámek, J.: Free algebras and automata realizations in the language of categories. Comment. Math. Univ. Carol. 015(4), 589–602 (1974)
Antić, C., Eiter, T., Fink, M.: Hex semantics via approximation fixpoint theory. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS (LNAI), vol. 8148, pp. 102–115. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40564-8_11
Barr, M.: Algebraically compact functors. J. Pure Appl. Algebra 82(3), 211–231 (1992). https://doi.org/10.1016/0022-4049(92)90169-G
Bos, R., Hemerik, C.: An Introduction to the Category-Theoretic Solution of Recursive Domain Equations. Computing Science Notes. Technische Universiteit Eindhoven (1988)
Charalambidis, A., Ésik, Z., Rondogiannis, P.: Minimum model semantics for extensional higher-order logic programming with negation. Theory Pract. Log. Program. 14(4–5), 725–737 (2014). https://doi.org/10.1017/S1471068414000313
Charalambidis, A., Rondogiannis, P., Symeonidou, I.: Approximation fixpoint theory and the well-founded semantics of higher-order logic programs. Theory Pract. Log. Program. 18(3–4), 421–437 (2018). https://doi.org/10.1017/S1471068418000108
Dasseville, I., van der Hallen, M., Bogaerts, B., Janssens, G., Denecker, M.: A compositional typed higher-order logic with definitions. In: Carro, M., King, A., Saeedloei, N., Vos, M.D. (eds.) Technical Communications of the 32nd International Conference on Logic Programming, ICLP 2016 TCs, New York City, USA, 16–21 October 2016. OASIcs, vol. 52, pp. 14:1–14:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016). https://doi.org/10.4230/OASIcs.ICLP.2016.14
Denecker, M., Bruynooghe, M., Vennekens, J.: Approximation fixpoint theory and the semantics of logic and answers set programs. In: Erdem, E., Lee, J., Lierler, Y., Pearce, D. (eds.) Correct Reasoning. LNCS, vol. 7265, pp. 178–194. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30743-0_13
Denecker, M., Marek, V., Truszczyński, M.: Approximations, stable operators, well-founded fixpoints and applications in nonmonotonic reasoning. In: Minker, J. (ed.) Logic-Based Artificial Intelligence, pp. 127–144. Kluwer Academic Publishers, Dordrecht (2000)
Denecker, M., Marek, V.W., Truszczynski, M.: Ultimate approximation and its application in nonmonotonic knowledge representation systems. Inf. Comput. 192(1), 84–121 (2004). https://doi.org/10.1016/j.ic.2004.02.004
Fitting, M.: Fixpoint semantics for logic programming: a survey. Theor. Comput. Sci. 278(1–2), 25–51 (2002). https://doi.org/10.1016/S0304-3975(00)00330-3
Frisch, A., Castagna, G., Benzaken, V.: Semantic subtyping: dealing set-theoretically with function, union, intersection, and negation types. J. ACM 55(4), 19:1–19:64 (2008). https://doi.org/10.1145/1391289.1391293
Gunter, C.A.: Semantics of Programming Languages - Structures and Techniques. Foundations of Computing. MIT Press (1993)
Liu, F., Bi, Y., Chowdhury, M.S., You, J.-H., Feng, Z.: Flexible approximators for approximating fixpoint theory. In: Khoury, R., Drummond, C. (eds.) AI 2016. LNCS (LNAI), vol. 9673, pp. 224–236. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34111-8_28
Liu, F., You, J.: Alternating fixpoint operator for hybrid MKNF knowledge bases as an approximator of AFT. Theory Pract. Log. Program. 22(2), 305–334 (2022). https://doi.org/10.1017/S1471068421000168
Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg (1987). https://doi.org/10.1007/978-3-642-83189-8
Pelov, N., Denecker, M., Bruynooghe, M.: Well-founded and stable semantics of logic programs with aggregates. Theory Pract. Log. Program. 7(3), 301–353 (2007). https://doi.org/10.1017/S1471068406002973
Pierce, B.C.: Basic Category Theory for Computer Scientists. Foundations of Computing. MIT Press (1991)
Rondogiannis, P., Symeonidou, I.: The intricacies of three-valued extensional semantics for higher-order logic programs. Theory Pract. Log. Program. 17(5–6), 974–991 (2017). https://doi.org/10.1017/S1471068417000357
Rondogiannis, P., Symeonidou, I.: Extensional semantics for higher-order logic programs with negation. Log. Methods Comput. Sci. 14(2) (2018). https://doi.org/10.23638/LMCS-14(2:19)2018
Schmidt, D.A.: Denotational Semantics: A Methodology for Language Development. William C. Brown Publishers (1986)
Smyth, M.B., Plotkin, G.D.: The category-theoretic solution of recursive domain equations. SIAM J. Comput. 11(4), 761–783 (1982). https://doi.org/10.1137/0211062
Stoy, J.E.: Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory. MIT Press, Cambridge (1977)
Strass, H., Wallner, J.P.: Analyzing the computational complexity of abstract dialectical frameworks via approximation fixpoint theory. Artif. Intell. 226, 34–74 (2015). https://doi.org/10.1016/j.artint.2015.05.003
Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math. 5(2), 285–309 (1955)
Tennent, R.D.: Semantics of Programming Languages. Prentice Hall International Series in Computer Science. Prentice Hall (1991)
Vennekens, J., Gilis, D., Denecker, M.: Splitting an operator: algebraic modularity results for logics with fixpoint semantics. ACM Trans. Comput. Log. 7(4), 765–797 (2006). https://doi.org/10.1145/1183278.1183284
Wand, M.: Fixed-point constructions in order-enriched categories. Theor. Comput. Sci. 8, 13–30 (1979). https://doi.org/10.1016/0304-3975(79)90053-7
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Charalambidis, A., Rondogiannis, P. (2023). Categorical Approximation Fixpoint Theory. In: Gaggl, S., Martinez, M.V., Ortiz, M. (eds) Logics in Artificial Intelligence. JELIA 2023. Lecture Notes in Computer Science(), vol 14281. Springer, Cham. https://doi.org/10.1007/978-3-031-43619-2_35
Download citation
DOI: https://doi.org/10.1007/978-3-031-43619-2_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43618-5
Online ISBN: 978-3-031-43619-2
eBook Packages: Computer ScienceComputer Science (R0)