[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Voting from Nearest Tasks: Meta-Vote Pruning of Pre-trained Models for Downstream Tasks

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Research Track (ECML PKDD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14170))

  • 1323 Accesses

Abstract

As large-scale pre-trained models have become the major choices of various applications, new challenges arise for model pruning, e.g., can we avoid pruning the same model from scratch for downstream tasks? How to reuse the pruning results of previous tasks to accelerate the pruning for new tasks? To address these challenges, we create a small model for a new task from the pruned models of similar tasks. We show that a few fine-tuning steps on this model suffice to produce a promising pruned model for the new task. We study this “meta-pruning” from nearest tasks on two major classes of pre-trained models, convolutional neural network and vision transformer, under a limited budget of pruning iterations. Our study begins by investigating the overlap of pruned models for similar tasks and how the overlap changes over different layers and blocks. Inspired by these discoveries, we develop a simple but effective “Meta-Vote Pruning” method that significantly reduces the pruning iterations for a new task by initializing a sub-network from the pruned models of its nearest tasks. In experiments, we demonstrate MVP’s accuracy, efficiency, and generalization advantages through extensive empirical studies and comparisons with popular pruning methods over several datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 67.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 84.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bai, Y., Wang, H., Tao, Z., Li, K., Fu, Y.: Dual lottery ticket hypothesis. arXiv preprint arXiv:2203.04248 (2022)

  2. Chen, X., He, K.: Exploring simple siamese representation learning. arXiv preprint arXiv:2011.10566 (2020)

  3. Chin, T.W., Ding, R., Zhang, C., Marculescu, D.: Towards efficient model compression via learned global ranking. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1515–1525 (2020)

    Google Scholar 

  4. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009). https://doi.org/10.1109/CVPR.2009.5206848

  5. Devries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout. arXiv: 1708.04552 (2017)

  6. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (2021). https://openreview.net/forum?id=YicbFdNTTy

  7. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: ICML (2017)

    Google Scholar 

  8. Frankle, J., Carbin, M.: The lottery ticket hypothesis: Training pruned neural networks. arXiv: 1803.03635 (2018)

  9. Goyal, S., Choudhury, A.R., Raje, S., Chakaravarthy, V., Sabharwal, Y., Verma, A.: Power-bert: accelerating bert inference via progressive word-vector elimination. In: International Conference on Machine Learning, pp. 3690–3699. PMLR (2020)

    Google Scholar 

  10. Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset (2007)

    Google Scholar 

  11. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural networks with pruning, trained quantization and huffman coding. In: International Conference on Learning Representations (ICLR) (2016)

    Google Scholar 

  12. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for efficient neural network. arXiv: 1506.02626 (2015)

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  14. He, Y., Liu, P., Zhu, L., Yang, Y.: Meta filter pruning to accelerate deep convolutional neural networks. arXiv: 1904.03961 (2019)

  15. Hou, L., Pang, R.Y., Zhou, T., Wu, Y., Song, X., Song, X., Zhou, D.: Token dropping for efficient bert pretraining. arXiv preprint arXiv:2203.13240 (2022)

  16. Jaccard, P.: Etude de la distribution florale dans une portion des alpes et du jura. Bull. Soc. Vaud. Sci. Nat. 37, 547–579 (1901). https://doi.org/10.5169/seals-266450

    Article  Google Scholar 

  17. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. University of Toronto, Tech. rep. (2009)

    Google Scholar 

  18. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.: Pruning filters for efficient convnets. arXiv: 1608.08710 (2017)

  19. Li, Y., Gu, S., Zhang, K., Gool, L., Timofte, R.: Dhp: Differentiable meta pruning via hypernetworks. arXiv: 2003.13683 (2020)

  20. Lin, S., Ji, R., Li, Y., Wu, Y., Huang, F., Zhang, B.: Accelerating convolutional networks via global & dynamic filter pruning. In: IJCAI (2018)

    Google Scholar 

  21. Liu, L., Zhou, T., Long, G., Jiang, J., Yao, L., Zhang, C.: Prototype propagation networks (ppn) for weakly-supervised few-shot learning on category graph. arXiv preprint arXiv:1905.04042 (2019)

  22. Liu, L., Zhou, T., Long, G., Jiang, J., Zhang, C.: Attribute propagation network for graph zero-shot learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 4868–4875 (2020)

    Google Scholar 

  23. Liu, Z., et al.: Metapruning: Meta learning for automatic neural network channel pruning. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3295–3304 (2019)

    Google Scholar 

  24. Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convolutional networks through network slimming. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2755–2763 (2017)

    Google Scholar 

  25. Louizos, C., Welling, M., Kingma, D.P.: Learning sparse neural networks through l0 regularization. arXiv: 1712.01312 (2018)

  26. Malach, E., Yehudai, G., Shalev-Shwartz, S., Shamir, O.: Proving the lottery ticket hypothesis: Pruning is all you need. In: ICML (2020)

    Google Scholar 

  27. Miller, G.A.: Wordnet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  28. Molchanov, P., Mallya, A., Tyree, S., Frosio, I., Kautz, J.: Importance estimation for neural network pruning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11264–11272 (2019)

    Google Scholar 

  29. Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolutional neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440 (2016)

  30. Nguyen, C., Hassner, T., Seeger, M., Archambeau, C.: Leep: a new measure to evaluate transferability of learned representations. In: International Conference on Machine Learning, pp. 7294–7305. PMLR (2020)

    Google Scholar 

  31. Nichol, A., Achiam, J., Schulman, J.: On first-order meta-learning algorithms. arXiv: 1803.02999 (2018)

  32. Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number of classes. In: 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing, pp. 722–729. IEEE (2008)

    Google Scholar 

  33. Pan, Z., Zhuang, B., Liu, J., He, H., Cai, J.: Scalable vision transformers with hierarchical pooling. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 377–386 (2021)

    Google Scholar 

  34. Parkhi, O.M., Vedaldi, A., Zisserman, A., Jawahar, C.: Cats and dogs. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3498–3505. IEEE (2012)

    Google Scholar 

  35. Pedersen, T., Patwardhan, S., Michelizzi, J., et al.: Wordnet: Similarity-measuring the relatedness of concepts. In: AAAI, vol. 4, pp. 25–29 (2004)

    Google Scholar 

  36. Savarese, P.H.P., Silva, H., Maire, M.: Winning the lottery with continuous sparsification. arXiv: 1912.04427 (2020)

  37. Sun, T., et al.: Learning sparse sharing architectures for multiple tasks. arXiv: 1911.05034 (2020)

  38. Tan, Y., Liu, Y., Long, G., Jiang, J., Lu, Q., Zhang, C.: Federated learning on non-iid graphs via structural knowledge sharing. arXiv preprint arXiv:2211.13009 (2022)

  39. Tan, Y., Long, G., Ma, J., Liu, L., Zhou, T., Jiang, J.: Federated learning from pre-trained models: a contrastive learning approach. arXiv preprint arXiv:2209.10083 (2022)

  40. Tang, Y., et al.: Patch slimming for efficient vision transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12165–12174 (2022)

    Google Scholar 

  41. Tian, H., Liu, B., Yuan, X., Liu, Q.: Meta-learning with network pruning. arXiv: 2007.03219 (2020)

  42. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers & distillation through attention. In: International Conference on Machine Learning, pp. 10347–10357. PMLR (2021)

    Google Scholar 

  43. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jegou, H.: Training data-efficient image transformers & distillation through attention. In: International Conference on Machine Learning, vol. 139, pp. 10347–10357 (July 2021)

    Google Scholar 

  44. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-ucsd birds-200-2011 dataset (2011)

    Google Scholar 

  45. Wu, Z., Palmer, M.: Verb semantics and lexical selection. arXiv preprint cmp-lg/9406033 (1994)

    Google Scholar 

  46. Yang, K., et al.: Adversarial auto-augment with label preservation: a representation learning principle guided approach. arXiv preprint arXiv:2211.00824 (2022)

  47. Yang, K., Zhou, T., Tian, X., Tao, D.: Identity-disentangled adversarial augmentation for self-supervised learning. In: International Conference on Machine Learning, pp. 25364–25381. PMLR (2022)

    Google Scholar 

  48. Yang, Y., Zhou, T., Jiang, J., Long, G., Shi, Y.: Continual task allocation in meta-policy network via sparse prompting. arXiv preprint arXiv:2305.18444 (2023)

  49. Ye, M., Wu, L., Liu, Q.: Greedy optimization provably wins the lottery: logarithmic number of winning tickets is enough. arXiv: 2010.15969 (2020)

  50. Yu, F., Huang, K., Wang, M., Cheng, Y., Chu, W., Cui, L.: Width & depth pruning for vision transformers. In: AAAI Conference on Artificial Intelligence (AAAI), vol. 2022 (2022)

    Google Scholar 

  51. Yu, S., et al.: Unified visual transformer compression. In: International Conference on Learning Representations (2022). https://openreview.net/forum?id=9jsZiUgkCZP

  52. Yuan, G., et al.: Mest: Accurate and fast memory-economic sparse training framework on the edge. In: Advances in Neural Information Processing Systems 34 (2021)

    Google Scholar 

  53. Zhao, H., Zhou, T., Long, G., Jiang, J., Zhang, C.: Extracting local reasoning chains of deep neural networks. Trans. Mach. Learn. Res. (2022). https://openreview.net/forum?id=RP6G787uD8

  54. Zhao, H., Zhou, T., Long, G., Jiang, J., Zhang, C.: Does continual learning equally forget all parameters? arXiv preprint arXiv:2304.04158 (2023)

  55. Zhu, M., Tang, Y., Han, K.: Vision transformer pruning. arXiv preprint arXiv:2104.08500 (2021)

  56. Zhuang, T., Zhang, Z., Huang, Y., Zeng, X., Shuang, K., Li, X.: Neuron-level structured pruning using polarization regularizer. In: NeurIPS (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Zhao .

Editor information

Editors and Affiliations

Ethics declarations

Ethical Statement

Our study utilizes only publicly available models and data widely used in the deep learning community. As such, we believe that our work is not associated with any potential ethical implications regarding the collection and processing of personal data or the inference of personal information. Our proposed method aims to improve the efficiency of applying large pre-trained models to downstream tasks and is not related to any use in policing or military settings. We are committed to maintaining the highest ethical standards in our research, and we have taken all necessary measures to ensure that our work complies with the ethical principles and values of the research community. Additionally, we want to emphasize that our research is intended for the betterment of society and is not intended to cause any harm.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, H., Zhou, T., Long, G., Jiang, J., Zhang, C. (2023). Voting from Nearest Tasks: Meta-Vote Pruning of Pre-trained Models for Downstream Tasks. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Research Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14170. Springer, Cham. https://doi.org/10.1007/978-3-031-43415-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43415-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43414-3

  • Online ISBN: 978-3-031-43415-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics