Abstract
A pilot study aimed to assess the usability of an adaptive multisensory virtual reality (VR) system for emotional self-regulation is presented. The neurofeedback relies on electroencephalography (EEG) and is proposed to participants for strengthening the anxiety regulation capacity, by following the task to down-regulate the high-beta band measured in the parietal region of the scalp (i.e., Pz). With respect to a previous version of the system, the proposed solution guarantees: (i) a better specification of the measurand, namely the anxiety regulation, within the context of emotional regulation, (ii) the implementation of a 3D fully adaptive neurofeedback in virtual reality, and (iii) a multisensory feedback combining visual and acoustic channels. Standardized auditory stimuli and abstract geometric primitives following principles of neuroaesthetics are used in order to induce emotional states. The study was conducted on three male participants, and the preliminary results demonstrate the acceptability of the proposed design, identifying it as a promising system for emotional self-regulation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
“Abstract Primitives 1”, freely downloadable on Sketchfab.
References
Gross, J.J.: Emotion regulation: current status and future prospects. Psychol. Inq. 26(1), 1–26 (2015)
Cisler, J.M., Olatunji, B.O., Feldner, M.T., Forsyth, J.P.: Emotion regulation and the anxiety disorders: an integrative review. J. Psychopathol. Behav. Assess. 32, 68–82 (2010)
Grecucci, A., Sığırcı, H., Lapomarda, G., Amodeo, L., Messina, I., Frederickson, J.: Anxiety regulation: from affective neuroscience to clinical practice. Brain Sci. 10(11), 846 (2020)
Hamdani, S.U., Zafar, S.W., Suleman, N., Waqas, A., Rahman, A., et al.: Effectiveness of relaxation techniques ‘as an active ingredient of psychological interventions’ to reduce distress, anxiety and depression in adolescents: a systematic review and meta-analysis. Int. J. Ment. Heal. Syst. 16(1), 1–17 (2022)
Arpaia, P., et al.: Mindfulness-based emotional acceptance in combination with neurofeedback for improving emotion self-regulation: a pilot study. In: 2022 IEEE International Conference on Metrology for Extended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE), pp. 465–470. IEEE (2022)
Enriquez-Geppert, S., Huster, R.J., Herrmann, C.S.: EEG-neurofeedback as a tool to modulate cognition and behavior: a review tutorial. Front. Hum. Neurosci. 11, 51 (2017)
Hamann, S.: Mapping discrete and dimensional emotions onto the brain: controversies and consensus. Trends Cogn. Sci. 16(9), 458–466 (2012)
Fox, N.A.: Dynamic cerebral processes underlying emotion regulation. In: Monographs of the Society for Research in Child Development, pp. 152–166 (1994)
Balconi, M., Frezza, A., Vanutelli, M.E.: Emotion regulation in schizophrenia: a pilot clinical intervention as assessed by EEG and optical imaging (functional near-infrared spectroscopy). Front. Hum. Neurosci. 12, 395 (2018)
Davidson, R.J.: Affective style and affective disorders: perspectives from affective neuroscience. Cogn. Emot. 12(3), 307–330 (1998)
Hafeez, Y., et al.: Development of enhanced stimulus content to improve the treatment efficacy of EEG-based frontal alpha asymmetry neurofeedback for stress mitigation. IEEE Access 9, 130638–130648 (2021)
Al-Ezzi, A., Kamel, N., Faye, I., Ebenezer, E.G.M.: EEG frontal theta-beta ratio and frontal midline theta for the assessment of social anxiety disorder. In: 2020 10th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), pp. 107–112. IEEE (2020)
Mennella, R., Patron, E., Palomba, D.: Frontal alpha asymmetry neurofeedback for the reduction of negative affect and anxiety. Behav. Res. Ther. 92, 32–40 (2017)
Trystuła, M., Zielińska, J., Półrola, P., Góral-Półrola, J., Kropotov, J.D., Pąchalska, M.: Neuromarkers of anxiety in a patient with suspected schizophrenia and TIA: the effect of individually-tailored neurofeedback. Acta Neuropsychologica 13(4), 395–403 (2015)
Riva, G., Wiederhold, B.K., Mantovani, F.: Neuroscience of virtual reality: from virtual exposure to embodied medicine. Cyberpsychol. Behav. Soc. Netw. 22(1), 82–96 (2019)
Rivu, R., Jiang, R., Mäkelä, V., Hassib, M., Alt, F.: Emotion elicitation techniques in virtual reality. In: Ardito, C., et al. (eds.) INTERACT 2021. LNCS, vol. 12932, pp. 93–114. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85623-6_8
Meuleman, B., Rudrauf, D.: Induction and profiling of strong multi-componential emotions in virtual reality. IEEE Trans. Affect. Comput. 12(1), 189–202 (2018)
Kihlstrom, J.F.: Ecological validity and “ecological validity’’. Perspect. Psychol. Sci. 16(2), 466–471 (2021)
Bekele, E., Bian, D., Peterman, J., Park, S., Sarkar, N.: Design of a virtual reality system for affect analysis in facial expressions (VR-SAAFE); application to schizophrenia. IEEE Trans. Neural Syst. Rehabil. Eng. 25(6), 739–749 (2016)
Lang, P.J., Bradley, M.M., Cuthbert, B.N., et al.: International affective picture system (IAPS): technical manual and affective ratings. NIMH Center Study Emot. Attent. 1(39–58), 3 (1997)
Arpaia, P., et al.: Virtual reality enhances EEG-based neurofeedback for emotional self-regulation. In: De Paolis, L.T., Arpaia, P., Sacco, M. (eds.) XR Salento 2022, Part II. LNCS, vol. 13446, pp. 420–431. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15553-6_29
Hammond, D.C.: Neurofeedback with anxiety and affective disorders. Child Adolescent Psychiatric Clinics 14(1), 105–123 (2005)
Arpaia, P., D’Errico, G., De Paolis, L.T., Moccaldi, N., Nuccetelli, F.: A narrative review of mindfulness-based interventions using virtual reality. Mindfulness 1–16 (2021)
Roo, J.S., Gervais, R., Hachet, M.: Inner garden: an augmented sandbox designed for self-reflection. In: Proceedings of the TEI 2016: Tenth International Conference on Tangible, Embedded, and Embodied Interaction, pp. 570–576 (2016)
Kitson, A., DiPaola, S., Riecke, B.E.: Lucid loop: a virtual deep learning biofeedback system for lucid dreaming practice. In: Extended Abstracts of the. CHI Conference on Human Factors in Computing Systems 2019, pp. 1–6 (2019)
Semertzidis, N., et al.: Neo-noumena: augmenting emotion communication. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1–13 (2020)
Zeki, S., Lamb, M.: The neurology of kinetic art. Brain 117(3), 607–636 (1994). https://doi.org/10.1093/brain/117.3.607
Bies, A.J., Blanc-Goldhammer, D.R., Boydston, C.R., Taylor, R.P., Sereno, M.E.: Aesthetic responses to exact fractals driven by physical complexity. Front. Hum. Neurosci. 10 (2016). https://www.frontiersin.org/articles/10.3389/fnhum.2016.00210
Street, N., Forsythe, A.M., Reilly, R., Taylor, R., Helmy, M.S.: A complex story: universal preference vs. individual differences shaping aesthetic response to fractals patterns. Front. Hum. Neurosci. 10 (2016). https://www.frontiersin.org/articles/10.3389/fnhum.2016.00213
Larson, C., Aronoff, J., Steuer, E.: Simple geometric shapes are implicitly associated with affective value. Motiv. Emot. 36, 09 (2011)
Bohil, C.J., Alicea, B., Biocca, F.A.: Virtual reality in neuroscience research and therapy. Nat. Rev. Neurosci. 12(12), 752–762 (2011)
Susindar, S., Sadeghi, M., Huntington, L., Singer, A., Ferris, T.K.: The feeling is real: emotion elicitation in virtual reality. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Los Angeles, CA, vol. 63, no. 1, pp. 252–256. SAGE Publications, Sage (2019)
Soleymani, M., Caro, M.N., Schmidt, E.M., Sha, C.-Y., Yang, Y.-H.: 1000 songs for emotional analysis of music. In: Proceedings of the 2nd ACM International Workshop on Crowdsourcing for Multimedia, pp. 1–6 (2013)
Russell, J.A.: A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161 (1980)
Ding, Y., Liu, J., Zhang, X., Yang, Z.: Dynamic tracking of state anxiety via multi-modal data and machine learning. Front. Psychiatry 13 (2022)
Unity. https://unity.com/. Accessed 28 Apr 2022
HTC VIVE PRO 2. https://www.vive.com/eu/product/vive-pro/. Accessed 28 Apr 2022
Neuroconcise technology. https://www.neuroconcise.co.uk/. Accessed 28 Apr 2022
Hammond, D.C.: What is neurofeedback? J. Neurother. 10(4), 25–36 (2007)
Brooke, J.: SUS: a ‘quick and dirty’ usability. In: Usability Evaluation in Industry, vol. 189, no. 3 (1996)
Bangor, A., Kortum, P.T., Miller, J.T.: An empirical evaluation of the system usability scale. Int. J. Hum.-Comput. Interact. 24(6), 574–594 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
D’Errico, G. et al. (2023). Design and Development of an Adaptive Multisensory Virtual Reality System for Emotional Self-Regulation. In: De Paolis, L.T., Arpaia, P., Sacco, M. (eds) Extended Reality. XR Salento 2023. Lecture Notes in Computer Science, vol 14218. Springer, Cham. https://doi.org/10.1007/978-3-031-43401-3_35
Download citation
DOI: https://doi.org/10.1007/978-3-031-43401-3_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43400-6
Online ISBN: 978-3-031-43401-3
eBook Packages: Computer ScienceComputer Science (R0)