[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Design and Development of an Adaptive Multisensory Virtual Reality System for Emotional Self-Regulation

  • Conference paper
  • First Online:
Extended Reality (XR Salento 2023)

Abstract

A pilot study aimed to assess the usability of an adaptive multisensory virtual reality (VR) system for emotional self-regulation is presented. The neurofeedback relies on electroencephalography (EEG) and is proposed to participants for strengthening the anxiety regulation capacity, by following the task to down-regulate the high-beta band measured in the parietal region of the scalp (i.e., Pz). With respect to a previous version of the system, the proposed solution guarantees: (i) a better specification of the measurand, namely the anxiety regulation, within the context of emotional regulation, (ii) the implementation of a 3D fully adaptive neurofeedback in virtual reality, and (iii) a multisensory feedback combining visual and acoustic channels. Standardized auditory stimuli and abstract geometric primitives following principles of neuroaesthetics are used in order to induce emotional states. The study was conducted on three male participants, and the preliminary results demonstrate the acceptability of the proposed design, identifying it as a promising system for emotional self-regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    “Abstract Primitives 1”, freely downloadable on Sketchfab.

References

  1. Gross, J.J.: Emotion regulation: current status and future prospects. Psychol. Inq. 26(1), 1–26 (2015)

    Article  MathSciNet  Google Scholar 

  2. Cisler, J.M., Olatunji, B.O., Feldner, M.T., Forsyth, J.P.: Emotion regulation and the anxiety disorders: an integrative review. J. Psychopathol. Behav. Assess. 32, 68–82 (2010)

    Article  Google Scholar 

  3. Grecucci, A., Sığırcı, H., Lapomarda, G., Amodeo, L., Messina, I., Frederickson, J.: Anxiety regulation: from affective neuroscience to clinical practice. Brain Sci. 10(11), 846 (2020)

    Article  Google Scholar 

  4. Hamdani, S.U., Zafar, S.W., Suleman, N., Waqas, A., Rahman, A., et al.: Effectiveness of relaxation techniques ‘as an active ingredient of psychological interventions’ to reduce distress, anxiety and depression in adolescents: a systematic review and meta-analysis. Int. J. Ment. Heal. Syst. 16(1), 1–17 (2022)

    Google Scholar 

  5. Arpaia, P., et al.: Mindfulness-based emotional acceptance in combination with neurofeedback for improving emotion self-regulation: a pilot study. In: 2022 IEEE International Conference on Metrology for Extended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE), pp. 465–470. IEEE (2022)

    Google Scholar 

  6. Enriquez-Geppert, S., Huster, R.J., Herrmann, C.S.: EEG-neurofeedback as a tool to modulate cognition and behavior: a review tutorial. Front. Hum. Neurosci. 11, 51 (2017)

    Article  Google Scholar 

  7. Hamann, S.: Mapping discrete and dimensional emotions onto the brain: controversies and consensus. Trends Cogn. Sci. 16(9), 458–466 (2012)

    Article  Google Scholar 

  8. Fox, N.A.: Dynamic cerebral processes underlying emotion regulation. In: Monographs of the Society for Research in Child Development, pp. 152–166 (1994)

    Google Scholar 

  9. Balconi, M., Frezza, A., Vanutelli, M.E.: Emotion regulation in schizophrenia: a pilot clinical intervention as assessed by EEG and optical imaging (functional near-infrared spectroscopy). Front. Hum. Neurosci. 12, 395 (2018)

    Article  Google Scholar 

  10. Davidson, R.J.: Affective style and affective disorders: perspectives from affective neuroscience. Cogn. Emot. 12(3), 307–330 (1998)

    Article  Google Scholar 

  11. Hafeez, Y., et al.: Development of enhanced stimulus content to improve the treatment efficacy of EEG-based frontal alpha asymmetry neurofeedback for stress mitigation. IEEE Access 9, 130638–130648 (2021)

    Article  Google Scholar 

  12. Al-Ezzi, A., Kamel, N., Faye, I., Ebenezer, E.G.M.: EEG frontal theta-beta ratio and frontal midline theta for the assessment of social anxiety disorder. In: 2020 10th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), pp. 107–112. IEEE (2020)

    Google Scholar 

  13. Mennella, R., Patron, E., Palomba, D.: Frontal alpha asymmetry neurofeedback for the reduction of negative affect and anxiety. Behav. Res. Ther. 92, 32–40 (2017)

    Article  Google Scholar 

  14. Trystuła, M., Zielińska, J., Półrola, P., Góral-Półrola, J., Kropotov, J.D., Pąchalska, M.: Neuromarkers of anxiety in a patient with suspected schizophrenia and TIA: the effect of individually-tailored neurofeedback. Acta Neuropsychologica 13(4), 395–403 (2015)

    Google Scholar 

  15. Riva, G., Wiederhold, B.K., Mantovani, F.: Neuroscience of virtual reality: from virtual exposure to embodied medicine. Cyberpsychol. Behav. Soc. Netw. 22(1), 82–96 (2019)

    Article  Google Scholar 

  16. Rivu, R., Jiang, R., Mäkelä, V., Hassib, M., Alt, F.: Emotion elicitation techniques in virtual reality. In: Ardito, C., et al. (eds.) INTERACT 2021. LNCS, vol. 12932, pp. 93–114. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85623-6_8

    Chapter  Google Scholar 

  17. Meuleman, B., Rudrauf, D.: Induction and profiling of strong multi-componential emotions in virtual reality. IEEE Trans. Affect. Comput. 12(1), 189–202 (2018)

    Article  Google Scholar 

  18. Kihlstrom, J.F.: Ecological validity and “ecological validity’’. Perspect. Psychol. Sci. 16(2), 466–471 (2021)

    Article  Google Scholar 

  19. Bekele, E., Bian, D., Peterman, J., Park, S., Sarkar, N.: Design of a virtual reality system for affect analysis in facial expressions (VR-SAAFE); application to schizophrenia. IEEE Trans. Neural Syst. Rehabil. Eng. 25(6), 739–749 (2016)

    Article  Google Scholar 

  20. Lang, P.J., Bradley, M.M., Cuthbert, B.N., et al.: International affective picture system (IAPS): technical manual and affective ratings. NIMH Center Study Emot. Attent. 1(39–58), 3 (1997)

    Google Scholar 

  21. Arpaia, P., et al.: Virtual reality enhances EEG-based neurofeedback for emotional self-regulation. In: De Paolis, L.T., Arpaia, P., Sacco, M. (eds.) XR Salento 2022, Part II. LNCS, vol. 13446, pp. 420–431. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15553-6_29

    Chapter  Google Scholar 

  22. Hammond, D.C.: Neurofeedback with anxiety and affective disorders. Child Adolescent Psychiatric Clinics 14(1), 105–123 (2005)

    Article  Google Scholar 

  23. Arpaia, P., D’Errico, G., De Paolis, L.T., Moccaldi, N., Nuccetelli, F.: A narrative review of mindfulness-based interventions using virtual reality. Mindfulness 1–16 (2021)

    Google Scholar 

  24. Roo, J.S., Gervais, R., Hachet, M.: Inner garden: an augmented sandbox designed for self-reflection. In: Proceedings of the TEI 2016: Tenth International Conference on Tangible, Embedded, and Embodied Interaction, pp. 570–576 (2016)

    Google Scholar 

  25. Kitson, A., DiPaola, S., Riecke, B.E.: Lucid loop: a virtual deep learning biofeedback system for lucid dreaming practice. In: Extended Abstracts of the. CHI Conference on Human Factors in Computing Systems 2019, pp. 1–6 (2019)

    Google Scholar 

  26. Semertzidis, N., et al.: Neo-noumena: augmenting emotion communication. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1–13 (2020)

    Google Scholar 

  27. Zeki, S., Lamb, M.: The neurology of kinetic art. Brain 117(3), 607–636 (1994). https://doi.org/10.1093/brain/117.3.607

    Article  Google Scholar 

  28. Bies, A.J., Blanc-Goldhammer, D.R., Boydston, C.R., Taylor, R.P., Sereno, M.E.: Aesthetic responses to exact fractals driven by physical complexity. Front. Hum. Neurosci. 10 (2016). https://www.frontiersin.org/articles/10.3389/fnhum.2016.00210

  29. Street, N., Forsythe, A.M., Reilly, R., Taylor, R., Helmy, M.S.: A complex story: universal preference vs. individual differences shaping aesthetic response to fractals patterns. Front. Hum. Neurosci. 10 (2016). https://www.frontiersin.org/articles/10.3389/fnhum.2016.00213

  30. Larson, C., Aronoff, J., Steuer, E.: Simple geometric shapes are implicitly associated with affective value. Motiv. Emot. 36, 09 (2011)

    Google Scholar 

  31. Bohil, C.J., Alicea, B., Biocca, F.A.: Virtual reality in neuroscience research and therapy. Nat. Rev. Neurosci. 12(12), 752–762 (2011)

    Article  Google Scholar 

  32. Susindar, S., Sadeghi, M., Huntington, L., Singer, A., Ferris, T.K.: The feeling is real: emotion elicitation in virtual reality. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Los Angeles, CA, vol. 63, no. 1, pp. 252–256. SAGE Publications, Sage (2019)

    Google Scholar 

  33. Soleymani, M., Caro, M.N., Schmidt, E.M., Sha, C.-Y., Yang, Y.-H.: 1000 songs for emotional analysis of music. In: Proceedings of the 2nd ACM International Workshop on Crowdsourcing for Multimedia, pp. 1–6 (2013)

    Google Scholar 

  34. Russell, J.A.: A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161 (1980)

    Article  Google Scholar 

  35. Ding, Y., Liu, J., Zhang, X., Yang, Z.: Dynamic tracking of state anxiety via multi-modal data and machine learning. Front. Psychiatry 13 (2022)

    Google Scholar 

  36. Unity. https://unity.com/. Accessed 28 Apr 2022

  37. HTC VIVE PRO 2. https://www.vive.com/eu/product/vive-pro/. Accessed 28 Apr 2022

  38. Neuroconcise technology. https://www.neuroconcise.co.uk/. Accessed 28 Apr 2022

  39. Hammond, D.C.: What is neurofeedback? J. Neurother. 10(4), 25–36 (2007)

    Article  Google Scholar 

  40. Brooke, J.: SUS: a ‘quick and dirty’ usability. In: Usability Evaluation in Industry, vol. 189, no. 3 (1996)

    Google Scholar 

  41. Bangor, A., Kortum, P.T., Miller, J.T.: An empirical evaluation of the system usability scale. Int. J. Hum.-Comput. Interact. 24(6), 574–594 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni D’Errico .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

D’Errico, G. et al. (2023). Design and Development of an Adaptive Multisensory Virtual Reality System for Emotional Self-Regulation. In: De Paolis, L.T., Arpaia, P., Sacco, M. (eds) Extended Reality. XR Salento 2023. Lecture Notes in Computer Science, vol 14218. Springer, Cham. https://doi.org/10.1007/978-3-031-43401-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43401-3_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43400-6

  • Online ISBN: 978-3-031-43401-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics