[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Strategy-Proof Budgeting via a VCG-Like Mechanism

  • Conference paper
  • First Online:
Algorithmic Game Theory (SAGT 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14238))

Included in the following conference series:

Abstract

We present a strategy-proof public goods budgeting mechanism where agents determine both the total volume of expenses and specific allocation. It is constructed as a modification of VCG to a non-typical environment, where we do not assume quasi-linear utilities or direct revelation. We further show that under plausible assumptions it satisfies strategyproofness in strictly dominant strategies, and consequently implements the social optimum as a Coalition-Proof Nash Equilibrium. A primary (albeit not an exclusive) motivation of our model is Participatory Budgeting, where members of a community collectively decide the spending policy of public tax dollars. In that scenario, charging individual payments from voters as the VCG method instructs would be undesirable, thus our second main result provides that, under further specifications relevant in that context, these payments will vanish in large populations, and can further be constructed as non-positive in some cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 51.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://arxiv.org/pdf/2303.06923.pdf.

  2. 2.

    ‘The Participatory Budget Project’: https://www.participatorybudgeting.org/.

  3. 3.

    See e.g. https://pbstanford.org/boston16internal/knapsack.

  4. 4.

    See for example https://data.oecd.org/gga/general-government-spending.htm, and [29].

  5. 5.

    Kahneman and Tversky themselves suggested a functional form built on power functions (See [31], p. 309) that has been adopted widely ever since [8]. Our Assumption 2 thus includes their class of functions and extends beyond it.

  6. 6.

    For example, if \(h(\vec {\alpha }_{-i})=\sum _{j \ne i}v_k(g(\bar{\alpha }_{-i}))\) and all agents collude and report \(\bar{\alpha }\), the outcome does not change while their payments will be eliminated.

  7. 7.

    https://data.oecd.org/gga/general-government-spending.htm.

  8. 8.

    In applications other than PB this may not be plausible. However, in such applications charging payments from agents could be acceptable.

  9. 9.

    See for example https://data.oecd.org/gga/general-government-spending.htm, and [29].

  10. 10.

    In the full version of the paper we show some preliminary regularity condition that implies differentiability given that \(g(\bar{\alpha })\) is unique.

References

  1. Aziz, H., Bogomolnaia, A., Moulin, H.: Fair mixing: the case of dichotomous preferences. In: ACM-EC 2019, pp. 753–781 (2019)

    Google Scholar 

  2. Aziz, H., Ganguly, A.: Participatory funding coordination: model, axioms and rules. In: Fotakis, D., Ríos Insua, D. (eds.) ADT 2021. LNCS (LNAI), vol. 13023, pp. 409–423. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87756-9_26

    Chapter  Google Scholar 

  3. Bachrach, Y.: Honor among thieves: collusion in multi-unit auctions. In: AAMAS’10, pp. 617–624 (2010)

    Google Scholar 

  4. Benade, G., Nath, S., Procaccia, A.D., Shah, N.: Preference elicitation for participatory budgeting. Manage. Sci. 67(5), 2813–2827 (2021)

    Article  Google Scholar 

  5. Bernard, A.: Optimal taxation and public production with budget constraints. In: The Economics of Public Services: Proceedings of a Conference held by the International Economic Association at Turin, Italy, pp. 361–389. Palgrave Macmillan, London (1977). https://doi.org/10.1007/978-1-349-02917-4_15

  6. Bernheim, B.D., Peleg, B., Whinston, M.D.: Coalition-proof nash equilibria i. concepts. J. Econ. Theory 42(1), 1–12 (1987)

    Google Scholar 

  7. Bjorvatn, K., Schjelderup, G.: Tax competition and international public goods. Int. Tax Public Finan. 9, 111–120 (2002)

    Article  Google Scholar 

  8. Booij, A.S., Van Praag, B.M., Van De Kuilen, G.: A parametric analysis of prospect theory’s functionals for the general population. Theory Decis. 68(1–2), 115–148 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brandl, F., Brandt, F., Peters, D., Stricker, C.: Distribution rules under dichotomous preferences: two out of three ain’t bad. In: Proceedings of the 22nd ACM Conference on Economics and Computation, pp. 158–179 (2021)

    Google Scholar 

  10. Brandl, F., Brandt, F., Peters, D., Stricker, C., Suksompong, W.: Funding public projects: a case for the nash product rule. arXiv preprint arXiv:2005.07997 (2020)

  11. Cavallo, R.: Optimal decision-making with minimal waste: strategyproof redistribution of VCG payments. In: Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 882–889 (2006)

    Google Scholar 

  12. Clarke, E.H.: Multipart pricing of public goods. Public choice, pp. 17–33 (1971)

    Google Scholar 

  13. Conitzer, V., Sandholm, T.: Failures of the VCG mechanism in combinatorial auctions and exchanges. In: AAMAS’06, pp. 521–528 (2006)

    Google Scholar 

  14. Fain, B., Goel, A., Munagala, K.: The core of the participatory budgeting problem. In: Cai, Y., Vetta, A. (eds.) WINE 2016. LNCS, vol. 10123, pp. 384–399. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-54110-4_27

    Chapter  Google Scholar 

  15. Fairstein, R., Lauz, A., Gal, K., Meir, R.: Modeling peoples voting behavior with poll information. arXiv preprint arXiv:1909.10492 (2019)

  16. Freeman, R., Pennock, D.M., Peters, D., Wortman Vaughan, J.: Truthful aggregation of budget proposals. In: ACM-EC’19, pp. 751–752 (2019)

    Google Scholar 

  17. Garg, N., Kamble, V., Goel, A., Marn, D., Munagala, K.: Iterative local voting for collective decision-making in continuous spaces. J. Artif. Intell. Res. 64, 315–355 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gibbard, A.: Manipulation of voting schemes: a general result. Econometrica: J. Econ. Soc., pp. 587–601 (1973)

    Google Scholar 

  19. Goel, A., Krishnaswamy, A.K., Sakshuwong, S., Aitamurto, T.: Knapsack voting for participatory budgeting. ACM Trans. Econ. Comput. (TEAC) 7(2), 1–27 (2019)

    Article  MathSciNet  Google Scholar 

  20. Guo, M., Conitzer, V.: Worst-case optimal redistribution of VCG payments in multi-unit auctions. Games Econ. Behav. 67(1), 69–98 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jain, K., Vazirani, V.V.: Eisenberg-gale markets: algorithms and structural properties. In: STOC’07, pp. 364–373 (2007)

    Google Scholar 

  22. Krugman, P., Wells, R.: Microeconomics. Macmillan (2008)

    Google Scholar 

  23. Lahkar, R., Mukherjee, S.: Dominant strategy implementation in a large population public goods game. Econ. Lett. 197, 109616 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nehring, K., Puppe, C.: The structure of strategy-proof social choice-part i: general characterization and possibility results on median spaces. J. Econ. Theory 135(1), 269–305 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic game theory, 2007. Book available for free online (2007)

    Google Scholar 

  26. Rey, S., Maly, J.: The (computational) social choice take on indivisible participatory budgeting. arXiv preprint arXiv:2303.00621 (2023)

  27. Roberts, K.: The characterization of implementable choice rules. Aggregation Revelation Preferences 12(2), 321–348 (1979)

    MathSciNet  MATH  Google Scholar 

  28. Satterthwaite, M.A.: Strategy-proofness and arrow’s conditions: existence and correspondence theorems for voting procedures and social welfare functions. J. Econ. Theory 10(2), 187–217 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  29. Stiglitz, J.E.: The theory of local public goods. In: The Economics of Public Services: Proceedings of a Conference Held by the International Economic Association at Turin, Italy. pp. 274–333. Springer (1977). https://doi.org/10.1007/978-1-349-02917-4_12

  30. Talmon, N., Faliszewski, P.: A framework for approval-based budgeting methods. In: AAAI’19, vol. 33, pp. 2181–2188 (2019)

    Google Scholar 

  31. Tversky, A., Kahneman, D.: Advances in prospect theory: cumulative representation of uncertainty. J. Risk Uncertainty 5(4), 297–323 (1992)

    Article  MATH  Google Scholar 

  32. Vazirani, V.V., Yannakakis, M.: Market equilibrium under separable, piecewise-linear, concave utilities. J. ACM (JACM) 58(3), 1–25 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wagner, J., Meir, R.: Strategy-proof budgeting via a VCG-like mechanism. arXiv preprint arXiv:2303.06923 (2023)

  34. Wildasin, D.E.: Nash equilibria in models of fiscal competition. J. Public Econ. 35(2), 229–240 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wagner, J., Meir, R. (2023). Strategy-Proof Budgeting via a VCG-Like Mechanism. In: Deligkas, A., Filos-Ratsikas, A. (eds) Algorithmic Game Theory. SAGT 2023. Lecture Notes in Computer Science, vol 14238. Springer, Cham. https://doi.org/10.1007/978-3-031-43254-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43254-5_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43253-8

  • Online ISBN: 978-3-031-43254-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics