[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Semi-supervised Classification for Remote Sensing Datasets

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2023 (ICIAP 2023)

Abstract

Deep semi-supervised learning (DSSL) is a rapidly-growing field that takes advantage of a limited number of labeled examples to leverage massive amounts of unlabeled data. The underlying idea is that training on small yet well-selected examples can perform as effectively as a predictor trained on a larger number chosen at random [14]. In this study, we explore the most relevant approaches in DSSL literature like FixMatch [19], CoMatch [13], and, the class aware contrastive SSL (CCSSL) [25]. Our objective is to perform an initial comparative study of these methods and assess them on two remote sensing (RS) datasets: UCM [27] and AID [22]. The performance of these methods was determined based on their accuracy in comparison to a supervised benchmark. The results highlight that the CoMatch framework achieves the highest accuracy for both the UCM and AID datasets, with accuracies of 95.52% and 93.88% respectively. Importantly, all DSSL algorithms outperform the supervised benchmark, emphasizing their effectiveness in leveraging a limited number of labeled examples to enhance classification accuracy for remote sensing scene classification tasks. The code used in this study was adapted from CCSSL [25] and the detailed implementation will be accessible at https://github.com/itzahs/SSL-for-RS.

This work was supported by the Ministry of Science and Innovation of Spain (PID2021-128794OB-I00), and the University Jaume I (PREDOC/2020/50 and Becas de Estancia de Investigación E-2022-30).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Arazo, E., Ortego, D., Albert, P., O’Connor, N.E., McGuinness, K.: Pseudo-labeling and confirmation bias in deep semi-supervised learning. CoRR abs/1908.02983 (2019). arxiv.org/abs/1908.02983

  2. Cheng, G., Xie, X., Han, J., Guo, L., Xia, G.S.: Remote sensing image scene classification meets deep learning: challenges, methods, benchmarks, and opportunities. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 13, 3735–3756 (2020). https://doi.org/10.1109/JSTARS.2020.3005403

    Article  Google Scholar 

  3. Chollet, F.: Deep Learning with Python, 2nd edn. Manning Publications, New York (2021). https://www.manning.com/books/deep-learning-with-python-second-edition

  4. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.: RandAugment: practical automated data augmentation with a reduced search space. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 18613–18624. Curran Associates, Inc. (2020)

    Google Scholar 

  5. Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K. (eds.) Advances in Neural Information Processing Systems, vol. 27. Curran Associates, Inc. (2014). https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

  6. Guo, H., Goodchild, M.F., Annoni, A. (eds.): Manual of Digital Earth. Springer, Singapore (2020). https://doi.org/10.1007/978-981-32-9915-3

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  8. Hu, F., Xia, G.S., Hu, J., Zhang, L.: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery. Remote Sen. 7(11), 14680–14707 (2015). https://doi.org/10.3390/rs71114680

  9. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: Bengio, Y., LeCun, Y. (eds.) 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, 14–16 April 2014, Conference Track Proceedings (2014). arxiv.org/abs/1312.6114

  10. Kipf, T.N., Welling, M.: Variational graph auto-encoders (2016). https://doi.org/10.48550/ARXIV.1611.07308, arxiv.org/abs/1611.07308

  11. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017, Conference Track Proceedings. OpenReview.net (2017). https://openreview.net/forum?id=SJU4ayYgl

  12. Lee, D.H.: Pseudo-label : the simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning ICML, vol. 3, no. 2 (2013)

    Google Scholar 

  13. Li, J., Xiong, C., Hoi, S.C.H.: CoMatch: semi-supervised learning with contrastive graph regularization. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9455–9464 (2021). https://doi.org/10.1109/ICCV48922.2021.00934

  14. Liu, Q., Liao, X., Carin, L.: Detection of unexploded ordnance via efficient semisupervised and active learning. IEEE Trans. Geosci. Remote Sens. 46(9), 2558–2567 (2008). https://doi.org/10.1109/TGRS.2008.920468

    Article  Google Scholar 

  15. Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., Johnson, B.A.: Deep learning in remote sensing applications: a meta-analysis and review. ISPRS J. Photogramm. Remote Sens. 152, 166–177 (2019). https://doi.org/10.1016/j.isprsjprs.2019.04.015, https://www.sciencedirect.com/science/article/pii/S0924271619301108

  16. Miyato, T., Maeda, S., Koyama, M., Ishii, S.: Virtual adversarial training: a regularization method for supervised and semi-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 1979–1993 (2019). https://doi.org/10.1109/TPAMI.2018.2858821

  17. Rasmus, A., Berglund, M., Honkala, M., Valpola, H., Raiko, T.: Semi-supervised learning with ladder networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc. (2015). https://proceedings.neurips.cc/paper/2015/file/378a063b8fdb1db941e34f4bde584c7d-Paper.pdf

  18. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 60 (2019). https://doi.org/10.1186/s40537-019-0197-0

  19. Sohn, K., et al.: FixMatch: simplifying semi-supervised learning with consistency and confidence. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 596–608. Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper/2020/file/06964dce9addb1c5cb5d6e3d9838f733-Paper.pdf

  20. Srivastava, P.K.K., Kumar, A., Mall, R.K., Saikia, P.: Earth Observation in Urban Monitoring: Techniques and Challenges, 1st edn. Elsevier, New York (2023)

    Google Scholar 

  21. Wang, Y., et al.: USB: a unified semi-supervised learning benchmark for classification (2022). https://doi.org/10.48550/ARXIV.2208.07204, arxiv.org/abs/2208.07204

  22. Xia, G.S., et al.: AID: a benchmark data set for performance evaluation of aerial scene classification. IEEE Trans. Geosci. Remote Sens. 55(7), 3965–3981 (2017). https://doi.org/10.1109/TGRS.2017.2685945

    Article  Google Scholar 

  23. Xie, Q., Dai, Z., Hovy, E., Luong, T., Le, Q.: Unsupervised data augmentation for consistency training. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 6256–6268. Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper/2020/file/44feb0096faa8326192570788b38c1d1-Paper.pdf

  24. Xu, Y., Ghamisi, P.: Universal adversarial examples in remote sensing: methodology and benchmark. IEEE Trans. Geosci. Remote Sens. 60, 1–15 (2022). https://doi.org/10.1109/TGRS.2022.3156392

    Article  Google Scholar 

  25. Yang, F., et al.: Class-aware contrastive semi-supervised learning. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14401–14410 (2022). https://doi.org/10.1109/CVPR52688.2022.01402

  26. Yang, X., Song, Z., King, I., Xu, Z.: A survey on deep semi-supervised learning. IEEE Trans. Knowl. Data Eng. 35(9), 1–20 (2022). https://doi.org/10.1109/TKDE.2022.3220219

  27. Yang, Y., Newsam, S.: Bag-of-visual-words and spatial extensions for land-use classification. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS 2010, pp. 270–279. Association for Computing Machinery, New York, NY, USA (2010). https://doi.org/10.1145/1869790.1869829

  28. Zagoruyko, S., Komodakis, N.: Wide residual networks. In: Wilson, R.C., Hancock, E.R., Smith, W.A.P. (eds.) Proceedings of the British Machine Vision Conference (BMVC), pp. 87.1–87.12. BMVA Press, September 2016. https://doi.org/10.5244/C.30.87

  29. Zhang, W., Tang, P., Zhao, L.: Remote sensing image scene classification using CNN-CapsNet. Remote Sens. 11(5), 494 (2019). https://doi.org/10.3390/rs11050494, https://www.mdpi.com/2072-4292/11/5/494

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itza Hernandez-Sequeira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hernandez-Sequeira, I., Fernandez-Beltran, R., Xu, Y., Ghamisi, P., Pla, F. (2023). Semi-supervised Classification for Remote Sensing Datasets. In: Foresti, G.L., Fusiello, A., Hancock, E. (eds) Image Analysis and Processing – ICIAP 2023. ICIAP 2023. Lecture Notes in Computer Science, vol 14233. Springer, Cham. https://doi.org/10.1007/978-3-031-43148-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43148-7_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43147-0

  • Online ISBN: 978-3-031-43148-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics