[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Continual Source-Free Unsupervised Domain Adaptation

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2023 (ICIAP 2023)

Abstract

Source-free Unsupervised Domain Adaptation (SUDA) approaches inherently exhibit catastrophic forgetting. Typically, models trained on a labeled source domain and adapted to unlabeled target data improve performance on the target while dropping performance on the source, which is not available during adaptation. In this study, our goal is to cope with the challenging problem of SUDA in a continual learning setting, i.e., adapting to the target(s) with varying distributional shifts while maintaining performance on the source. The proposed framework consists of two main stages: i) a SUDA model yielding cleaner target labels—favoring good performance on target, and ii) a novel method for synthesizing class-conditioned source-style images by leveraging only the source model and pseudo-labeled target data as a prior. An extensive pool of experiments on major benchmarks, e.g., PACS, Visda-C, and DomainNet demonstrates that the proposed Continual SUDA (C-SUDA) framework enables preserving satisfactory performance on the source domain without exploiting the source data at all.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed, W., Morerio, P., Murino, V.: Cleaning noisy labels by negative ensemble learning for source-free unsupervised domain adaptation. In: IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1616–1625 (2022)

    Google Scholar 

  2. Bang, J., Kim, H., Yoo, Y., Ha, J.W., Choi, J.: Rainbow memory: continual learning with a memory of diverse samples. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8218–8227 (2021)

    Google Scholar 

  3. Belal, A., Kiran, M., Dolz, J., Blais-Morin, L.A., Granger, E., et al.: Knowledge distillation methods for efficient unsupervised adaptation across multiple domains. Image Vis. Comput. 108, 104096 (2021)

    Article  Google Scholar 

  4. Bobu, A., Tzeng, E., Hoffman, J., Darrell, T.: Adapting to continuously shifting domains. In: ICLR (2018)

    Google Scholar 

  5. Carlucci, F.M., D’Innocente, A., Bucci, S., Caputo, B., Tommasi, T.: Domain generalization by solving jigsaw puzzles. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2229–2238 (2019)

    Google Scholar 

  6. Chen, C., et al.: Progressive feature alignment for unsupervised domain adaptation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 627–636 (2019)

    Google Scholar 

  7. Ge, Y., Chen, D., Li, H.: Mutual mean-teaching: pseudo label refinery for unsupervised domain adaptation on person re-identification. In: International Conference on Learning Representations (2020)

    Google Scholar 

  8. Gholami, B., Sahu, P., Rudovic, O., Bousmalis, K., Pavlovic, V.: Unsupervised multi-target domain adaptation: an information theoretic approach. IEEE Trans. Image Process. 29, 3993–4002 (2020)

    Article  MATH  Google Scholar 

  9. Hu, S.X., et al.: Empirical Bayes transductive meta-learning with synthetic gradients. In: International Conference on Learning Representations (2020)

    Google Scholar 

  10. Kim, Y., Cho, D., Han, K., Panda, P., Hong, S.: Domain adaptation without source data. IEEE Trans. Artif. Intell. 2(6), 508–518 (2021). https://doi.org/10.1109/TAI.2021.3110179

    Article  Google Scholar 

  11. Li, D., Hospedales, T.: Online meta-learning for multi-source and semi-supervised domain adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 382–403. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_23

    Chapter  Google Scholar 

  12. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Deeper, broader and artier domain generalization. In: IEEE International Conference on Computer Vision, pp. 5542–5550 (2017)

    Google Scholar 

  13. Li, R., Jiao, Q., Cao, W., Wong, H.S., Wu, S.: Model adaptation: unsupervised domain adaptation without source data. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9641–9650 (2020)

    Google Scholar 

  14. Li, Y., Yuan, L., Chen, Y., Wang, P., Vasconcelos, N.: Dynamic transfer for multi-source domain adaptation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10998–11007 (2021)

    Google Scholar 

  15. Liang, J., Hu, D., Feng, J.: Do we really need to access the source data? Source hypothesis transfer for unsupervised domain adaptation. In: III, H.D., Singh, A. (eds.) 37th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 119, pp. 6028–6039. PMLR, 13–18 July 2020

    Google Scholar 

  16. Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015

    Google Scholar 

  17. Mordvintsev, A., Olah, C., Tyka, M.: Inceptionism: going deeper into neural networks (2015)

    Google Scholar 

  18. Morerio, P., Volpi, R., Ragonesi, R., Murino, V.: Generative pseudo-label refinement for unsupervised domain adaptation. In: The IEEE Winter Conference on Applications of Computer Vision, pp. 3130–3139 (2020)

    Google Scholar 

  19. Pan, X., Zhan, X., Dai, B., Lin, D., Loy, C.C., Luo, P.: Exploiting deep generative prior for versatile image restoration and manipulation. IEEE Trans. Pattern Anal. Mach. Intell. 44(11), 7474–7489 (2021)

    Article  Google Scholar 

  20. Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., Wang, B.: Moment matching for multi-source domain adaptation. In: IEEE International Conference on Computer Vision, pp. 1406–1415 (2019)

    Google Scholar 

  21. Peng, X., Usman, B., Kaushik, N., Wang, D., Hoffman, J., Saenko, K.: VisDA: a synthetic-to-real benchmark for visual domain adaptation. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 2021–2026 (2018)

    Google Scholar 

  22. Santurkar, S., Ilyas, A., Tsipras, D., Engstrom, L., Tran, B., Madry, A.: Image synthesis with a single (robust) classifier. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019)

    Google Scholar 

  23. Shi, Y., Yuan, L., Chen, Y., Feng, J.: Continual learning via bit-level information preserving. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16674–16683 (2021)

    Google Scholar 

  24. Tang, H., Jia, K.: Discriminative adversarial domain adaptation. In: AAAI, pp. 5940–5947 (2020)

    Google Scholar 

  25. Torralba, A., Efros, A.A.: Unbiased look at dataset bias. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1521–1528 (2011)

    Google Scholar 

  26. Volpi, R., Larlus, D., Rogez, G.: Continual adaptation of visual representations via domain randomization and meta-learning. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4443–4453 (2021)

    Google Scholar 

  27. Volpi, R., Namkoong, H., Sener, O., Duchi, J., Murino, V., Savarese, S.: Generalizing to unseen domains via adversarial data augmentation. In: 32nd International Conference on Neural Information Processing Systems, pp. 5339–5349 (2018)

    Google Scholar 

  28. Xia, H., Zhao, H., Ding, Z.: Adaptive adversarial network for source-free domain adaptation. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9010–9019, October 2021

    Google Scholar 

  29. Xu, J., Xiao, L., López, A.M.: Self-supervised domain adaptation for computer vision tasks. IEEE Access 7, 156694–156706 (2019)

    Article  Google Scholar 

  30. Yang, L., Balaji, Y., Lim, S.-N., Shrivastava, A.: Curriculum manager for source selection in multi-source domain adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 608–624. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_36

    Chapter  Google Scholar 

  31. Yang, S., Wang, Y., van de Weijer, J., Herranz, L., Jui, S.: Generalized source-free domain adaptation. In: IEEE/CVF International Conference on Computer Vision, pp. 8978–8987 (2021)

    Google Scholar 

  32. Yin, H., et al.: Dreaming to distill: data-free knowledge transfer via DeepInversion. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8715–8724 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waqar Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahmed, W., Morerio, P., Murino, V. (2023). Continual Source-Free Unsupervised Domain Adaptation. In: Foresti, G.L., Fusiello, A., Hancock, E. (eds) Image Analysis and Processing – ICIAP 2023. ICIAP 2023. Lecture Notes in Computer Science, vol 14233. Springer, Cham. https://doi.org/10.1007/978-3-031-43148-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43148-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43147-0

  • Online ISBN: 978-3-031-43148-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics