[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On-Line Authenticity Verification of a Biometric Signature Using Dynamic Time Warping Method and Neural Networks

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2023)

Abstract

To ensure proper authentication, e.g. in banking systems, multimodal verification are becoming more prevalent. In this paper an on-line signature based on dynamic time warping (DTW) coupled with neural networks has been proposed. The goal of this research was to test if combining neural networks with DTW improves the effectiveness of verification of a handwritten signature, compared to the classifier based on fixed thresholds. The DTW algorithm was used as a feature extraction method and a similarity measure. Two neural network architectures were tested: multilayer perceptron (MLP) and one with convolutional neural network (CNN). A dataset containing model, verification and forged signatures gathered from a research group using a biometric pen has been created. The research has proved that the DTW coupled with neural networks perform significantly better than the baseline method - DTW model based on constant thresholds. The results are presented and discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 63.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cochran, W.G.: The comparison of percentages in matched samples. Biometrika 37(3–4), 256–266 (1950). https://doi.org/10.1093/biomet/37.3-4.256

    Article  PubMed  Google Scholar 

  2. Dhieb, T., Boubaker, H., Njah, S., Ben Ayed, M., Alimi, A.M.: A novel biometric system for signature verification based on score level fusion approach. Multimedia Tools Appl. 81(6), 7817–7845 (2022). https://doi.org/10.1007/s11042-022-12140-7

    Article  Google Scholar 

  3. Doroz, R., Porwik, P., Orczyk, T.: Dynamic signature verification method based on association of features with similarity measures. Neurocomputing 171, 921–931 (2016). https://doi.org/10.1016/j.neucom.2015.07.026. https://www.sciencedirect.com/science/article/pii/S0925231215010036

  4. Durrani, M.Y., Khan, S., Khalid, S.: Versig: a new approach for online signature verification. Cluster Comput. 22, 7229–7239 (2019)

    Article  Google Scholar 

  5. Fahmy, M.M.: Online handwritten signature verification system based on dwt features extraction and neural network classification. Ain Shams Eng. J. 1(1), 59–70 (2010). https://doi.org/10.1016/j.asej.2010.09.007. https://www.sciencedirect.com/science/article/pii/S2090447910000080

  6. Galbally, J., Diaz-Cabrera, M., Ferrer, M.A., Gomez-Barrero, M., Morales, A., Fierrez, J.: On-line signature recognition through the combination of real dynamic data and synthetically generated static data. Pattern Recogn. 48(9), 2921–2934 (2015)

    Article  Google Scholar 

  7. Giorgino, T.: Computing and visualizing dynamic time warping alignments in r: the dtw package. J. Stat. Softw. 31, 1–24 (2009)

    Article  Google Scholar 

  8. Jain, A.K., Griess, F.D., Connell, S.D.: On-line signature verification. Pattern Recogn. 35(12), 2963–2972 (2002). https://doi.org/10.1016/S0031-3203(01)00240-0. https://www.sciencedirect.com/science/article/pii/S0031320301002400

  9. Kavzoglu, T.: Chapter 33 - object-oriented random forest for high resolution land cover mapping using quickbird-2 imagery. In: Samui, P., Sekhar, S., Balas, V.E. (eds.) Handbook of Neural Computation, pp. 607–619. Academic Press (2017). https://doi.org/10.1016/B978-0-12-811318-9.00033-8. https://www.sciencedirect.com/science/article/pii/B9780128113189000338

  10. Kholmatov, A., Yanikoglu, B.: Susig: an on-line signature database, associated protocols and benchmark results. Pattern Anal. Appl. 12, 227–236 (2009)

    Article  Google Scholar 

  11. Lai, S., Jin, L., Yang, W.: Online signature verification using recurrent neural network and length-normalized path signature descriptor. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 1, pp. 400–405. IEEE (2017)

    Google Scholar 

  12. Lech, M., Czyżewski, A.: Handwritten signature verification system employing wireless biometric pen. In: Bembenik, R., Skonieczny, Ł, Protaziuk, G., Kryszkiewicz, M., Rybinski, H. (eds.) Intelligent Methods and Big Data in Industrial Applications. SBD, vol. 40, pp. 307–319. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77604-0_22

    Chapter  Google Scholar 

  13. Munich, M., Perona, P.: Continuous dynamic time warping for translation-invariant curve alignment with applications to signature verification. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 1, pp. 108–115 (1999). https://doi.org/10.1109/ICCV.1999.791205

  14. Myers, C., Rabiner, L., Rosenberg, A.: Performance tradeoffs in dynamic time warping algorithms for isolated word recognition. IEEE Trans. Acoust. Speech Signal Process. 28(6), 623–635 (1980). https://doi.org/10.1109/TASSP.1980.1163491

    Article  Google Scholar 

  15. Ortega-Garcia, J., et al.: Mcyt baseline corpus: a bimodal biometric database. IEE Proc. Vision Image Signal Process. 150(6), 395–401 (2003)

    Article  Google Scholar 

  16. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 26(1), 43–49 (1978)

    Article  Google Scholar 

  17. Salvador, S., Chan, P.: Toward accurate dynamic time warping in linear time and space. Intell. Data Anal. 11(5), 561–580 (2007)

    Article  Google Scholar 

  18. Sharma, A., Sundaram, S.: On the exploration of information from the dtw cost matrix for online signature verification. IEEE Trans. Cybern. 48(2), 611–624 (2018). https://doi.org/10.1109/TCYB.2017.2647826

    Article  PubMed  Google Scholar 

  19. Shokoohi-Yekta, M., Hu, B., Jin, H., Wang, J., Keogh, E.: Generalizing dynamic time warping to the multi-dimensional case requires an adaptive approach. Citeseer (2015)

    Google Scholar 

  20. Tolosana, R., Vera-Rodriguez, R., Fierrez, J., Ortega-Garcia, J.: Exploring recurrent neural networks for on-line handwritten signature biometrics. IEEE Access 6, 5128–5138 (2018)

    Article  Google Scholar 

  21. Wu, X., Kimura, A., Iwana, B.K., Uchida, S., Kashino, K.: Deep dynamic time warping: end-to-end local representation learning for online signature verification. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1103–1110 (2019). https://doi.org/10.1109/ICDAR.2019.00179

  22. Wu, X., Kimura, A., Uchida, S., Kashino, K.: Prewarping siamese network: learning local representations for online signature verification. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2467–2471. IEEE (2019)

    Google Scholar 

  23. Yeung, D.-Y., et al.: SVC2004: first international signature verification competition. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 16–22. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25948-0_3

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Walentukiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Walentukiewicz, K., Masiak, A., Gałka, A., Jelińska, J., Lech, M. (2023). On-Line Authenticity Verification of a Biometric Signature Using Dynamic Time Warping Method and Neural Networks. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2023. Lecture Notes in Computer Science, vol 14135. Springer, Cham. https://doi.org/10.1007/978-3-031-43078-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43078-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43077-0

  • Online ISBN: 978-3-031-43078-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics