[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Automatic Control of Class Weights in the Semantic Segmentation of Corrosion Compounds on Archaeological Artefacts

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2023)

Abstract

The semantic segmentation for irregularly and not uniformly disposed patterns becomes even more difficult when the occurrence of categories is imbalanced within the images. One example is represented by heavily corroded artefacts in archaeological digs. The current study therefore proposes a weighted loss function within a deep learning architecture for semantic segmentation of corrosion compounds from microscopy images of archaeological objects, where the values for the class weights are generated via genetic algorithms. The fitness evaluation of individuals is the estimation that a surrogate of the deep learner gives concerning the segmentation accuracy. The obtained class weight values are compared to a random search through the space of potential configurations and another automated means to compute them, in terms of resulting model accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 63.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arun, C., Lakshmi, C.: Genetic algorithm-based oversampling approach to prune the class imbalance issue in software defect prediction. Soft Comput. 26(23), 12915–12931 (2022)

    Article  Google Scholar 

  2. Bacanin, N., Stoean, R., Zivkovic, M., Petrovic, A., Rashid, T.A., Bezdan, T.: Performance of a novel chaotic firefly algorithm with enhanced exploration for tackling global optimization problems: application for dropout regularization. Mathematics 9(21), 1 (2021)

    Article  Google Scholar 

  3. Bartz-Beielstein, T., Chandrasekaran, S., Rehbach, F.: Case Study III: Tuning of Deep Neural Networks, pp. 235–269. Springer Nature Singapore, Singapore (2023)

    Google Scholar 

  4. Bi, J., Zhang, C.: An empirical comparison on state-of-the-art multi-class imbalance learning algorithms and a new diversified ensemble learning scheme. KBS 158, 81–93 (2018)

    Google Scholar 

  5. Dutta, A., Zisserman, A.: The VIA annotation software for images, audio and video. In: 27th ACM International Conference on Multimedia, p. 4 (2019)

    Google Scholar 

  6. Forkan, A.R.M., et al.: Corrdetector: a framework for structural corrosion detection from drone images using ensemble deep learning. Expert Syst. Appl. 193, 116461 (2022)

    Article  Google Scholar 

  7. Gad, A.F.: PyGAD: An intuitive genetic algorithm python library. https://arxiv.org/abs/2106.06158 (2021)

  8. Katsamenis, I., Protopapadakis, E., Doulamis, A., Doulamis, N., Voulodimos, A.: Pixel-level corrosion detection on metal constructions by fusion of deep learning semantic and contour segmentation. In: Bebis, G., et al. (eds.) ISVC 2020. LNCS, vol. 12509, pp. 160–169. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64556-4_13

    Chapter  Google Scholar 

  9. King, G., Zeng, L.: Logistic regression in rare events data. Polit. Anal. 9, 137–163 (2001)

    Article  Google Scholar 

  10. Kumar, P., Batra, S., Raman, B.: Deep neural network hyper-parameter tuning through twofold genetic approach. Soft Comput. 25(13), 8747–8771 (2021). https://doi.org/10.1007/s00500-021-05770-w

    Article  Google Scholar 

  11. Pedregosa, F., et al.: Scikit-learn: machine learning in python. JMLR 12, 2825–2830 (2011)

    Google Scholar 

  12. Postavaru, S., Stoean, R., Stoean, C., Caparros, G.J.: Adaptation of deep convolutional neural networks for cancer grading from histopathological images. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017. LNCS, vol. 10306, pp. 38–49. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59147-6_4

    Chapter  Google Scholar 

  13. Rehbach, F., Zaefferer, M., Naujoks, B., Bartz-Beielstein, T.: Expected improvement versus predicted value in surrogate-based optimization. In: The 2020 Genetic and Evolutionary Computation Conference, pp. 868–876 (2020)

    Google Scholar 

  14. Roshan, S.E., Asadi, S.: Improvement of bagging performance for classification of imbalanced datasets using evolutionary multi-objective optimization. Eng. Appl. Artif. Intell. 87, 103319 (2020)

    Article  Google Scholar 

  15. Samide, A., Stoean, C., Stoean, R.: Surface study of inhibitor films formed by polyvinyl alcohol and silver nanoparticles on stainless steel in hydrochloric acid solution using convolutional neural networks. Appl. Surf. Sci. 475, 1–5 (2019)

    Article  CAS  Google Scholar 

  16. Samide, A., Stoean, R., Stoean, C., Tutunaru, B., Grecu, R.: Investigation of polymer coatings formed by polyvinyl alcohol and silver nanoparticles on copper surface in acid medium by means of deep convolutional neural networks. Coatings 9, 105 (2019)

    Article  Google Scholar 

  17. Stoean, C., Stoean, R., Sandita, A., Ciobanu, D., Mesina, C., Gruia, C.L.: SVM-based cancer grading from histopathological images using morphological and topological features of glands and nuclei. In: De Pietro, G., Gallo, L., Howlett, R.J., Jain, L.C. (eds.) Intelligent Interactive Multimedia Systems and Services 2016. SIST, vol. 55, pp. 145–155. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39345-2_13

    Chapter  Google Scholar 

  18. Stoean, R.: Analysis on the potential of an EA-surrogate modelling tandem for deep learning parametrization: an example for cancer classification from medical images. Neural Comput. Appl. 32, 313–322 (2020)

    Article  Google Scholar 

  19. Stoean, R., Bacanin, N., Stoean, C., Ionescu, L., Atencia, M., Joya, G.: Computational framework for the evaluation of the composition and degradation state of metal heritage assets by deep learning. J. Cult. Heritage (under review) (2023)

    Google Scholar 

  20. Tanha, J., Abdi, Y., Samadi, N., Razzaghi, N., Asadpour, M.: Boosting methods for multi-class imbalanced data classification: an experimental review. J. Big Data 7(1), 1–47 (2020). https://doi.org/10.1186/s40537-020-00349-y

    Article  Google Scholar 

  21. Zhang, M., Li, H., Pan, S., Lyu, J., Ling, S., Su, S.: Convolutional neural networks-based lung nodule classification: a surrogate-assisted evolutionary algorithm for hyperparameter optimization. IEEE Trans. Evol. Comput. 25(5), 869–882 (2021)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by a grant of the Romanian Ministry of Research and Innovation, CCCDI – UEFISCDI, project number 178PCE/2021, PN-III-P4-ID-PCE-2020-0788, Object PErception and Reconstruction with deep neural Architectures (OPERA), within PNCDI III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruxandra Stoean .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stoean, R., Báez, P.G., Araujo, C.P.S., Bacanin, N., Atencia, M., Stoean, C. (2023). Automatic Control of Class Weights in the Semantic Segmentation of Corrosion Compounds on Archaeological Artefacts. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2023. Lecture Notes in Computer Science, vol 14135. Springer, Cham. https://doi.org/10.1007/978-3-031-43078-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43078-7_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43077-0

  • Online ISBN: 978-3-031-43078-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics