[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Towards a Voxelized Semantic Representation of the Workspace of Mobile Robots

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14135))

Included in the following conference series:

  • 654 Accesses

Abstract

The primitives used to model objects in semantic maps heavily influence their suitability for certain robot tasks, as well as the computational load required to process them. This paper contributes a semantic mapping framework that incrementally and efficiently builds a voxelized representation of the robot workspace, providing a balanced trade-off between model expressiveness and computational load. Our proposal detects objects in intensity images coming from an RGB-D camera, and uses depth information to retrieve their point cloud representations. These point clouds are then voxelized and enhanced with their probability of belonging to certain object categories. Finally, voxels are fused with the semantic map in a Bayesian probabilistic framework. Efficiency comes from its client-server design, which allows multiple mobile robots to participate as clients and leaves computationally intensive processes to the server. The proposed framework has been evaluated in both simulated and real environments, yielding accurate voxelized representations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 63.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/Unity-Technologies/ROS-TCP-Connector.

References

  1. Blanco, J.L., González, J., Fernández-Madrigal, J.A.: Subjective local maps for hybrid metric-topological slam. Robot. Auton. Syst. 57(1), 64–74 (2009)

    Article  Google Scholar 

  2. Chatila, R., Laumond, J.: Position referencing and consistent world modeling for mobile robots. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 138–145. IEEE (1985)

    Google Scholar 

  3. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp. 226–231 (1996)

    Google Scholar 

  4. Fernandez-Chaves, D., Ruiz-Sarmiento, J.R., Petkov, N., Gonzalez-Jimenez, J.: Vimantic, a distributed robotic architecture for semantic mapping in indoor environments. Int. J. Knowl.-Based Syst. 232, 107440 (2021)

    Article  Google Scholar 

  5. Fernandez-Chaves, D., Ruiz-Sarmiento, J.R., Jaenal, A., Petkov, N., Gonzalez-Jimenez, J.: Robot@VirtualHome, an ecosystem of virtual environments and tools for realistic indoor robotic simulation. Expert Syst. Appl. 208, 117970 (2022)

    Article  Google Scholar 

  6. Fox, D., Burgard, W., Dellaert, F., Thrun, S.: Monte carlo localization: efficient position estimation for mobile robots. AAAI/IAAI 1999(343–349), 2–2 (1999)

    Google Scholar 

  7. Galindo, C., Fernández-Madrigal, J.A., González, J., Saffiotti, A.: Robot task planning using semantic maps. Robot. Auton. Syst. 56(11), 955–966 (2008)

    Article  Google Scholar 

  8. González-Jiménez, J., Galindo, C., Ruiz-Sarmiento, J.: Technical improvements of the giraff telepresence robot based on users’ evaluation. In: 2012 IEEE RO-MAN, pp. 827–832 (2012)

    Google Scholar 

  9. Grinvald, M., et al.: Volumetric instance-aware semantic mapping and 3D object discovery. IEEE Robot. Autom. Lett. 4(3), 3037–3044 (2019)

    Article  Google Scholar 

  10. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  11. Jocher, G., Chaurasia, A., Qiu, J.: YOLO by Ultralytics (2023). https://github.com/ultralytics/ultralytics

  12. Juliani, A., et al.: Unity: a general platform for intelligent agents. arXiv preprint arXiv:1809.02627 (2018)

  13. Kuipers, B.: Modeling spatial knowledge. Cogn. Sci. 2(2), 129–153 (1978)

    Article  Google Scholar 

  14. Lam, L., Lee, S.W., Suen, C.Y.: Thinning methodologies-a comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 14(09), 869–885 (1992)

    Article  Google Scholar 

  15. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  16. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: ICCV, pp. 10012–10022 (2021)

    Google Scholar 

  17. Macenski, S., Tsai, D., Feinberg, M.: Spatio-temporal voxel layer: a view on robot perception for the dynamic world. Int. J. Adv. Robot. Syst. 17(2) (2020)

    Google Scholar 

  18. Macenski, S., Foote, T., Gerkey, B., Lalancette, C., Woodall, W.: Robot operating system 2: design, architecture, and uses in the wild. Sci. Robot. 7(66), eabm6074 (2022)

    Article  PubMed  Google Scholar 

  19. Matez-Bandera, J.L., Fernandez-Chaves, D., Ruiz-Sarmiento, J.R., Monroy, J., Petkov, N., Gonzalez-Jimenez, J.: LTC-Mapping, enhancing long-term consistency of object-oriented semantic maps in robotics. Sensors 22(14), 5308 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  20. Milstein, A.: Occupancy grid maps for localization and mapping. Motion Plann. 381–408 (2008)

    Google Scholar 

  21. Mutlu, B., Roy, N., Šabanović, S.: Cognitive human–robot interaction. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 1907–1934. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32552-1_71

    Chapter  Google Scholar 

  22. Nakajima, Y., Saito, H.: Efficient object-oriented semantic mapping with object detector. IEEE Access 7, 3206–3213 (2018)

    Article  Google Scholar 

  23. Narita, G., Seno, T., Ishikawa, T., Kaji, Y.: Panopticfusion: online volumetric semantic mapping at the level of stuff and things. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4205–4212. IEEE (2019)

    Google Scholar 

  24. Nüchter, A., Hertzberg, J.: Towards semantic maps for mobile robots. Robot. Auton. Syst. 56(11), 915–926 (2008)

    Article  Google Scholar 

  25. Rosinol, A., Abate, M., Chang, Y., Carlone, L.: Kimera: an open-source library for real-time metric-semantic localization and mapping. In: ICRA (2020)

    Google Scholar 

  26. Ruiz-Sarmiento, J.R., Galindo, C., Gonzalez-Jimenez, J.: Building multiversal semantic maps for mobile robot operation. Knowl.-Based Syst. 119, 257–272 (2017)

    Article  Google Scholar 

  27. Ruiz-Sarmiento, J.R., Galindo, C., González-Jiménez, J.: Robot@ home, a robotic dataset for semantic mapping of home environments. Int. J. Robot. Res. 36(2), 131–141 (2017)

    Article  Google Scholar 

  28. Song, S., Yu, F., Zeng, A., Chang, A.X., Savva, M., Funkhouser, T.: Semantic scene completion from a single depth image. In: CVPR, pp. 1746–1754 (2017)

    Google Scholar 

  29. Wu, Y., Kirillov, A., Massa, F., Lo, W., Girshick, R.: Detectron2 repository (2023). https://github.com/facebookresearch/detectron2/. Accessed March 30 2023

  30. Xiang, Y., Choi, W., Lin, Y., Savarese, S.: Data-driven 3D voxel patterns for object category recognition. In: ICVPR

    Google Scholar 

  31. Zhou, Q.Y., Park, J., Koltun, V.: Open3D: a modern library for 3D data processing. arXiv:1801.09847 (2018)

  32. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. In: ICLR 2021 (2021)

    Google Scholar 

  33. Zuñiga-Noël, D., Ruiz-Sarmiento, J.R., Gomez-Ojeda, R., Gonzalez-Jimenez, J.: Automatic multi-sensor extrinsic calibration for mobile robots. IEEE Robot. Autom. Lett. 4(3), 2862–2869 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

Work partially supported by the research projects ARPEGGIO ([PID2020-117057GB-I00]) and HOUNDBOT ([P20-01302]), funded by the Spanish Government and the Regional Government of Andalusia with support from the ERDF (European Regional Development Funds), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose-Raul Ruiz-Sarmiento .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Perez-Bazuelo, AJ., Ruiz-Sarmiento, JR., Ambrosio-Cestero, G., Gonzalez-Jimenez, J. (2023). Towards a Voxelized Semantic Representation of the Workspace of Mobile Robots. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2023. Lecture Notes in Computer Science, vol 14135. Springer, Cham. https://doi.org/10.1007/978-3-031-43078-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43078-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43077-0

  • Online ISBN: 978-3-031-43078-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics