[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Splitting Structural and Semantic Knowledge in Graph Autoencoders for Graph Regression

  • Conference paper
  • First Online:
Graph-Based Representations in Pattern Recognition (GbRPR 2023)

Abstract

This paper introduces ReGenGraph, a new method for graph regression that combines two well-known modules: an autoencoder and a graph autoencoder. The main objective of our proposal is to split the knowledge in the graph nodes into semantic and structural knowledge during the embedding process. It uses the autoencoder to extract the semantic knowledge and the graph autoencoder to extract the structural knowledge. The resulting embedded vectors of both modules are then combined and used for graph regression to predict a global property of the graph. The method demonstrates improved performance compared to classical methods, i.e., autoencoders or graph autoencoders alone. The approach has been applied to predict the binding energy of chemical compounds represented as attributed graphs but could be used in other fields as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fadlallah, S., Julià, C., Serratosa, F.: Graph regression based on graph autoencoders. In: Krzyzak, A., Suen, C.Y., Torsello, A., Nobile, N. (eds.) Structural, Syntactic, and Statistical Pattern Recognition, pp. 142–151. Springer International Publishing, Cham (2022)

    Chapter  Google Scholar 

  2. Garcia-Hernandez, C., Fernández, A., Serratosa, F.: Ligand-based virtual screening using graph edit distance as molecular similarity measure. J. Chem. Inf. Model. 59(4), 1410–1421 (2019)

    Article  Google Scholar 

  3. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org

  4. Kingma, D.P., Rezende, D.J., Mohamed, S., Welling, M.: Semi-supervised learning with deep generative models (2014)

    Google Scholar 

  5. Kipf, T.N.: Deep Learning with Graph-Structured Representations. Ph.D. thesis, University of Amsterdam (2020)

    Google Scholar 

  6. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. CoRR abs/1609.02907 (2016). arXiv:1609.02907

  7. Kramer, M.A.: Nonlinear principal component analysis using autoassociative neural networks. AIChE J. 37, 233–243 (1991)

    Article  Google Scholar 

  8. Le, T., Le, N., Le, B.: Knowledge graph embedding by relational rotation and complex convolution for link prediction. Expert Syst. Appl. 214, 119122 (2023). https://doi.org/10.1016/j.eswa.2022.119122

  9. Majumdar, A.: Graph structured autoencoder. Neural Netw. 106, 271–280 (2018). https://doi.org/10.1016/j.neunet.2018.07.016

  10. Naveed, M., et al.: A reverse vaccinology approach to design an mrna-based vaccine to provoke a robust immune response against hiv-1. Acta Biochimica Polonica 70(2) (2023). https://doi.org/10.18388/abp.2020_6696

  11. Remesh, S., et al.:Unconventional peptide presentation by major histocompatibility complex (mhc) class i allele hla-a*02:01:breaking confinement. J. Biol. Chem. 292(13) (2017). https://doi.org/10.1074/jbc.M117.776542

  12. Reynisson, B., Alvarez, B., Paul, S., Peters, B., Nielsen, M.: Netmhcpan-4.1 and netmhciipan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 48(W1), W449–W454 (2020). https://doi.org/10.1093/nar/gkaa379

  13. Rica, E., Álvarez, S., Serratosa, F.: Ligand-based virtual screening based on the graph edit distance. Int. J. Mol. Sci. 22(23), 12751 (2021)

    Article  Google Scholar 

  14. Schymkowitz, J., Borg, J., Stricher, F., Nys, R., Rousseau, F., Serrano, L.: The foldx web server: an online force field. Nucleic acids research 33(Web Server issue) (2005). https://doi.org/10.1093/nar/gki387

  15. Serratosa, Francesc: Redefining the graph edit distance. SN Comput. Sci. 2(6), 1–7 (2021). https://doi.org/10.1007/s42979-021-00792-5

    Article  Google Scholar 

  16. Serratosa, F., Cortés, X.: Graph edit distance: moving from global to local structure to solve the graph-matching problem. Pattern Recogn. Lett. 65, 204–210 (2015)

    Article  Google Scholar 

  17. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

    Google Scholar 

  18. Vita, R., et al.: The immune epitope database (iedb): 2018 update. Nucleic Acids Res. 47(D1) (2018). https://doi.org/10.1093/nar/gky1006

  19. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1), 4–24 (2021). https://doi.org/10.1109/TNNLS.2020.2978386

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is supported by the Universitat Rovira i Virgili through the Martí Franquès grant and partially funded by AGAUR research group 2021SGR-00111: “ASCLEPIUS: Smart Technology for Smart Healthcare”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesc Serratosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fadlallah, S., Segura Alabart, N., Julià, C., Serratosa, F. (2023). Splitting Structural and Semantic Knowledge in Graph Autoencoders for Graph Regression. In: Vento, M., Foggia, P., Conte, D., Carletti, V. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2023. Lecture Notes in Computer Science, vol 14121. Springer, Cham. https://doi.org/10.1007/978-3-031-42795-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42795-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42794-7

  • Online ISBN: 978-3-031-42795-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics