Abstract
We consider a protein that negatively regulates the rate with which a cell grows. Since less growth means less protein dilution, this mechanism forms a positive feedback loop on the protein concentration. We couple the feedback model with a simple description of the cell cycle, in which a division event is triggered when the cell volume reaches a critical threshold. Following the division we either track only one of the daughter cells (single cell framework) or both cells (population framework). For both frameworks, we find an exact time-independent distribution of protein concentration and cell volume. We explore the consequences of dilution feedback on ergodicity, population growth rate, and the bias of the population distribution towards faster growing cells with less protein.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Albayrak, C., et al.: Digital quantification of proteins and mRNA in single mammalian cells. Mol. Cell 61(6), 914–924 (2016). https://doi.org/10.1016/j.molcel.2016.02.030
Athreya, K.B., Ney, P.E., Ney, P.: Branching processes. Courier Corporation (2004)
Backenköhler, M., Bortolussi, L., Großmann, G., Wolf, V.: Abstraction-guided truncations for stationary distributions of Markov population models. In: Quantitative Evaluation of Systems: 18th International Conference, QEST 2021, Paris, France, August 23–27, 2021, Proceedings 18, pp. 351–371. Springer (2021). https://doi.org/10.1007/978-3-030-85172-9_19
Backenköhler, M., Bortolussi, L., Wolf, V.: Variance reduction in stochastic reaction networks using control variates. In: Principles of Systems Design: Essays Dedicated to Thomas A. Henzinger on the Occasion of His 60th Birthday, pp. 456–474. Springer (2022)
Beentjes, C.H., Perez-Carrasco, R., Grima, R.: Exact solution of stochastic gene expression models with bursting, cell cycle and replication dynamics. Phys. Rev. E 101(3), 032403 (2020). https://doi.org/10.1103/PhysRevE.101.032403
Bokes, P.: Heavy-tailed distributions in a stochastic gene autoregulation model. J. Stat. Mech: Theory Exp. 2021(11), 113403 (2021). https://doi.org/10.1088/1742-5468/ac2edb
Bokes, P.: Stationary and time-dependent molecular distributions in slow-fast feedback circuits. SIAM J. Appl. Dyn. Syst. 21(2), 903–931 (2022). https://doi.org/10.1137/21M1404338
Bokes, P., Singh, A.: Protein copy number distributions for a self-regulating gene in the presence of decoy binding sites. PLoS ONE 10(3), e0120555 (2015). https://doi.org/10.1371/journal.pone.0120555
Bokes, P., Singh, A.: Cell volume distributions in exponentially growing populations. In: Computational Methods in Systems Biology: 17th International Conference, CMSB 2019, Trieste, Italy, September 18–20, 2019, Proceedings 17. pp. 140–154. Springer (2019). https://doi.org/10.1007/978-3-030-31304-3_8
Bokes, P., Singh, A.: Controlling noisy expression through auto regulation of burst frequency and protein stability. In: Hybrid Systems Biology: 6th International Workshop, HSB 2019, Prague, Czech Republic, April 6–7, 2019, Selected Papers 6, pp. 80–97. Springer (2019). https://doi.org/10.1007/978-3-030-28042-0_6
Cai, L., Friedman, N., Xie, X.S.: Stochastic protein expression in individual cells at the single molecule level. Nature 440(7082), 358–362 (2006). https://doi.org/10.1038/nature04599
Çelik, C., Bokes, P., Singh, A.: Stationary distributions and metastable behaviour for self-regulating proteins with general lifetime distributions. In: Computational Methods in Systems Biology: 18th International Conference, CMSB 2020, Konstanz, Germany, September 23–25, 2020, Proceedings, pp. 27–43. Springer (2020). DOI: https://doi.org/10.1007/978-3-030-60327-4_2
Çelik, C., Bokes, P., Singh, A.: Protein noise and distribution in a two-stage gene-expression model extended by an mRNA inactivation loop. In: Computational Methods in Systems Biology: 19th International Conference, CMSB 2021, Bordeaux, France, September 22–24, 2021, Proceedings 19, pp. 215–229. Springer (2021). https://doi.org/10.1007/978-3-030-85633-5_13
Dawson, D.A., Maisonneuve, B., Spencer, J., Dawson, D.: Measure-valued Markov processes. Springer (1993)
De Jong, H., et al.: Mathematical modelling of microbes: metabolism, gene expression and growth. J. R. Soc. Interface 14(136), 20170502 (2017). https://doi.org/10.1098/rsif.2017.0502
Dekel, E., Alon, U.: Optimality and evolutionary tuning of the expression level of a protein. Nature 436(7050), 588–592 (2005). https://doi.org/10.1038/nature03842
Desoeuvres, A., Szmolyan, P., Radulescu, O.: Qualitative dynamics of chemical reaction networks: an investigation using partial tropical equilibrations. In: Computational Methods in Systems Biology: 20th International Conference, CMSB 2022, Bucharest, Romania, September 14–16, 2022, Proceedings, pp. 61–85. Springer (2022). https://doi.org/10.1007/978-3-031-15034-0_4
Doumic, M., Hoffmann, M.: Individual and population approaches for calibrating division rates in population dynamics: Application to the bacterial cell cycle. arXiv preprint arXiv:2108.13155 (2021).
Duso, L., Zechner, C.: Stochastic reaction networks in dynamic compartment populations. Proc. Natl. Acad. Sci. 117(37), 22674–22683 (2020). https://doi.org/10.1073/pnas.2003734117
Facchetti, G., Chang, F., Howard, M.: Controlling cell size through sizer mechanisms. Curr. Opinion Syst. Biol. 5, 86–92 (2017). https://doi.org/10.1016/j.coisb.2017.08.010
Fraser, L.C., Dikdan, R.J., Dey, S., Singh, A., Tyagi, S.: Reduction in gene expression noise by targeted increase in accessibility at gene loci. Proc. Natl. Acad. Sci. 118(42), e2018640118 (2021). https://doi.org/10.1073/pnas.2018640118
Friedman, N., Cai, L., Xie, X.S.: Linking stochastic dynamics to population distribution: an analytical framework of gene expression. Phys. Rev. Lett. 97(16), 168302 (2006). https://doi.org/10.1103/PhysRevLett.97.168302
Genthon, A.: Analytical cell size distribution: lineage-population bias and parameter inference. J. R. Soc. Interface 19(196), 20220405 (2022). https://doi.org/10.1098/rsif.2022.0405
Holehouse, J., Cao, Z., Grima, R.: Stochastic modeling of autoregulatory genetic feedback loops: a review and comparative study. Biophys. J . 118(7), 1517–1525 (2020). https://doi.org/10.1016/j.bpj.2020.02.016
Huang, G.R., Saakian, D.B., Rozanova, O., Yu, J.L., Hu, C.K.: Exact solution of master equation with Gaussian and compound Poisson noises. J. Stat. Mech: Theor. Exp. 2014(11), P11033 (2014). https://doi.org/10.1088/1742-5468/2014/11/P11033
Janson, S.: Functional limit theorems for multitype branching processes and generalized Pólya urns. Stochastic Process. Appl. 110(2), 177–245 (2004). https://doi.org/10.1016/j.spa.2003.12.002
Jędrak, J., Kwiatkowski, M., Ochab-Marcinek, A.: Exactly solvable model of gene expression in a proliferating bacterial cell population with stochastic protein bursts and protein partitioning. Phys. Rev. E 99(4), 042416 (2019). https://doi.org/10.1103/PhysRevE.99.042416
Jędrak, J., Ochab-Marcinek, A.: Time-dependent solutions for a stochastic model of gene expression with molecule production in the form of a compound Poisson process. Phys. Rev. E 94(3), 032401 (2016). https://doi.org/10.1103/PhysRevE.94.032401
Jia, C., Grima, R.: Coupling gene expression dynamics to cell size dynamics and cell cycle events: exact and approximate solutions of the extended telegraph model. Iscience 26(1), 105746 (2023). https://doi.org/10.1016/j.isci.2022.105746
Jia, C., Singh, A., Grima, R.: Cell size distribution of lineage data: analytic results and parameter inference. Iscience 24(3), 102220 (2021). https://doi.org/10.1016/j.isci.2021.102220
Jia, C., Singh, A., Grima, R.: Concentration fluctuations in growing and dividing cells: insights into the emergence of concentration homeostasis. PLoS Comput. Biol. 18(10), e1010574 (2022). https://doi.org/10.1371/journal.pcbi.1010574
Jia, C., Xie, P., Chen, M., Zhang, M.Q.: Stochastic fluctuations can reveal the feedback signs of gene regulatory networks at the single-molecule level. Sci. Rep. 7(1), 1–9 (2017). https://doi.org/10.1038/s41598-017-15464-9
Jia, C., Zhang, M.Q., Qian, H.: Emergent Lévy behavior in single-cell stochastic gene expression. Phys. Rev. E 96(4), 040402 (2017). https://doi.org/10.1103/PhysRevE.96.040402
Kumar, N., Platini, T., Kulkarni, R.V.: Exact distributions for stochastic gene expression models with bursting and feedback. Phys. Rev. Lett. 113(26), 268105 (2014). https://doi.org/10.1103/PhysRevLett.113.268105
Kumar, N., Singh, A., Kulkarni, R.V.: Transcriptional bursting in gene expression: analytical results for general stochastic models. PLoS Comput. Biol. 11(10), e1004292 (2015). https://doi.org/10.1371/journal.pcbi.1004292
Mackey, M.C., Tyran-Kaminska, M., Yvinec, R.: Dynamic behavior of stochastic gene expression models in the presence of bursting. SIAM J. Appl. Math. 73(5), 1830–1852 (2013). https://doi.org/10.1137/12090229X
Molenaar, D., Van Berlo, R., De Ridder, D., Teusink, B.: Shifts in growth strategies reflect tradeoffs in cellular economics. Mol. Syst. Biol. 5(1), 323 (2009). https://doi.org/10.1038/msb.2009.82
Nieto-Acuña, C., Arias-Castro, J.C., Vargas-García, C., Sánchez, C., Pedraza, J.M.: Correlation between protein concentration and bacterial cell size can reveal mechanisms of gene expression. Phys. Biol. 17(4), 045002 (2020). https://doi.org/10.1088/1478-3975/ab891c
Ochab-Marcinek, A., Tabaka, M.: Bimodal gene expression in noncooperative regulatory systems. Proc. Natl. Acad. Sci. 107(51), 22096–22101 (2010). https://doi.org/10.1073/pnas.1008965107
Padovan-Merhar, O., et al.: Single mammalian cells compensate for differences in cellular volume and DNA copy number through independent global transcriptional mechanisms. Mol. Cell 58(2), 339–352 (2015). https://doi.org/10.1016/j.molcel.2015.03.005
Patange, O., et al.: Escherichia coli can survive stress by noisy growth modulation. Nat. Commun. 9(1), 5333 (2018). https://doi.org/10.1038/s41467-018-07702-z
Romanel, A., Jensen, L.J., Cardelli, L., Csikász-Nagy, A.: Transcriptional regulation is a major controller of cell cycle transition dynamics. PLoS ONE 7(1), e29716 (2012). https://doi.org/10.1371/journal.pone.0029716
Rotem, E., et al.: Regulation of phenotypic variability by a threshold-based mechanism underlies bacterial persistence. Proc. Natl. Acad. Sci. 107(28), 12541–12546 (2010). https://doi.org/10.1073/pnas.1004333107
Shaffer, S.M., et al.: Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature 546(7658), 431–435 (2017). https://doi.org/10.1038/nature22794
Shahrezaei, V., Swain, P.S.: Analytical distributions for stochastic gene expression. Proc. Natl. Acad. Sci. 105(45), 17256–17261 (2008). https://doi.org/10.1073/pnas.0803850105
Taheri-Araghi, S., et al.: Cell-size control and homeostasis in bacteria. Curr. Biol. 25(3), 385–391 (2015). https://doi.org/10.1016/j.cub.2014.12.009
Tan, C., Marguet, P., You, L.: Emergent bistability by a growth-modulating positive feedback circuit. Nat. Chem. Biol. 5(11), 842–848 (2009). https://doi.org/10.1038/nchembio.218
Thattai, M., Van Oudenaarden, A.: Intrinsic noise in gene regulatory networks. Proc. Natl. Acad. Sci. 98(15), 8614–8619 (2001). https://doi.org/10.1073/pnas.151588598
Thomas, P., Shahrezaei, V.: Coordination of gene expression noise with cell size: analytical results for agent-based models of growing cell populations. J. R. Soc. Interface 18(178), 20210274 (2021). https://doi.org/10.1098/rsif.2021.0274
Turpin, B., Bijman, E.Y., Kaltenbach, H.M., Stelling, J.: Population design for synthetic gene circuits. In: Computational Methods in Systems Biology: 19th International Conference, CMSB 2021, Bordeaux, France, September 22–24, 2021, Proceedings 19, pp. 181–197. Springer (2021). https://doi.org/10.1007/978-3-030-85633-5_11
Vadia, S., Levin, P.A.: Growth rate and cell size: a re-examination of the growth law. Curr. Opin. Microbiol. 24, 96–103 (2015). https://doi.org/10.1016/j.mib.2015.01.011
Van Heerden, J.H., Kempe, H., Doerr, A., Maarleveld, T., Nordholt, N., Bruggeman, F.J.: Statistics and simulation of growth of single bacterial cells: illustrations with B. subtilis and E. coli. Sci. Reports 7(1), 16094 (2017). https://doi.org/10.1038/s41598-017-15895-4
Vargas-Garcia, C.A., Ghusinga, K.R., Singh, A.: Cell size control and gene expression homeostasis in single-cells. Curr. Opinion Syst. Biol. 8, 109–116 (2018). https://doi.org/10.1016/j.coisb.2018.01.002
Xia, M., Greenman, C.D., Chou, T.: PDE models of adder mechanisms in cellular proliferation. SIAM J. Appl. Math. 80(3), 1307–1335 (2020). https://doi.org/10.1137/19M1246754
Zabaikina, I., Zhang, Z., Nieto, C., Bokes, P., Singh, A.: Quantifying noise modulation from coupling of stochastic expression to cellular growth: An analytical approach. bioRxiv, pp. 2022–10 (2022). https://doi.org/10.1101/2022.10.03.510723
Acknowledgements
PB was supported by the Slovak Research and Development Agency under contract no. APVV-18-0308, and VEGA grants 1/0339/21 and 1/0755/22.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zabaikina, I., Bokes, P., Singh, A. (2023). Joint Distribution of Protein Concentration and Cell Volume Coupled by Feedback in Dilution. In: Pang, J., Niehren, J. (eds) Computational Methods in Systems Biology. CMSB 2023. Lecture Notes in Computer Science(), vol 14137. Springer, Cham. https://doi.org/10.1007/978-3-031-42697-1_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-42697-1_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-42696-4
Online ISBN: 978-3-031-42697-1
eBook Packages: Computer ScienceComputer Science (R0)