[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Exploring Target Identification for Drug Design with K-Nearest Neighbors’ Algorithm

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2023)

Abstract

The identification of possible targets for a known compound by its sole molecular representation is one of the most important tasks for drug design and development. In this work, a methodology is proposed for target identification using supervised machine learning. To predict drug binding targets, classification models across targets were constructed using the k-NN algorithm by integrating multiple data types. Two different groups of descriptors are used: 1) Morgan’s fingerprint and 2) general molecular properties of interest. The findings demonstrate that the k-NN classification models achieved a higher f1-score with descriptors based on molecular properties of interest with 0.7 in comparison to the Morgan fingerprint descriptors that achieved a score of 0.57 or the fusion of both with a score of 0.58.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 51.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Czarnecki, W.M.: Weighted Tanimoto extreme learning machine with case study in drug discovery. IEEE Comput. Intell. Mag. 10(3), 19–29 (2015)

    Article  Google Scholar 

  2. Zhang, W., Lin, W., Zhang, D., Wang, S., Shi, J., Niu, Y.: Recent advances in the machine learning-based drug-target interaction prediction. Curr. Drug Metab. 20(3), 194–202 (2019)

    Article  Google Scholar 

  3. Sydow, D., et al.: Advances and challenges in computational target prediction. J. Chem. Inf. Model. 59 (2019)

    Google Scholar 

  4. Mathai, N., Kirchmair, J.: Similarity-based methods and machine learning approaches for target prediction in early drug discovery: performance and scope. Int. J. Mol. Sci. 21(10), 3585 (2020)

    Article  Google Scholar 

  5. Yang, S., et al.: Current advances in ligand-based target prediction. Wiley Interdisc. Rev. Comput. Mol. Sci. 11, 1–21 (2020)

    Google Scholar 

  6. Schuffenhauer, A., Floersheim, P., Acklin, P., Jacoby, E.: Similarity metrics for ligands reflecting the similarity of the target proteins. J. Chem. Inf. Comput. Sci. 43(2), 391–405 (2003)

    Article  Google Scholar 

  7. Nogueira, M.S., Koch, O.: The development of target-specific machine learning models as scoring functions for docking-based target prediction. J. Chem. Inf. Model. 59(3), 1238–1252 (2019). PMID: 30802041

    Article  Google Scholar 

  8. Zhao, S., Shao, L.: Network-based relating pharmacological and genomic spaces for drug target identification. PLoS ONE 5(7) (2010)

    Google Scholar 

  9. Shaikh, F., Tai, H.K., Desai, N., Siu, S.: Ligtmap: ligand and structure-based target identification and activity prediction for small molecules. J. Cheminform. (2020)

    Google Scholar 

  10. Bento, A.P., et al.: The ChEMBL bioactivity database: an update. Nucleic Acids Res. 42(D1), D1083–D1090 (2013)

    Google Scholar 

  11. Mendez, D., et al.: ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res. 47(D1), D930–D940 (2018)

    Google Scholar 

  12. Wishart, D.S., et al.: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46(D1), D1074–D1082 (2017)

    Google Scholar 

  13. Wang, Y., et al.: PubChem BioAssay: 2017 update. Nucleic Acids Res. 45(D1), D955–D963 (2016)

    Google Scholar 

  14. Ding, Y., Tang, J., Guo, F.: Identification of drug-target interactions via multiple information integration. Inf. Sci. 418–419, 546–560 (2017)

    Article  Google Scholar 

  15. Peón, A., et al.: Moltarpred: a web tool for comprehensive target prediction with reliability estimation. Chem. Biol. Drug Des. 94 (2019)

    Google Scholar 

  16. Cockroft, N.T., Cheng, X., Fuchs, J.R.: Starfish: a stacked ensemble target fishing approach and its application to natural products. J. Chem. Inf. Model. 59(11), 4906–4920 (2019). PMID: 31589422

    Article  Google Scholar 

  17. Awale, M., Reymond, J.-L.: The polypharmacology browser ppb2: target prediction combining nearest neighbors with machine learning. J. Chem. Inf. Model. 59, 12 (2018)

    Google Scholar 

  18. Cui, X., Liu, J., Zhang, J., Qiuyun, W., Li, X.: In silico prediction of drug-induced rhabdomyolysis with machine-learning models and structural alerts. J. Appl. Toxicol. 39, 1224–1232 (2019)

    Article  Google Scholar 

  19. Shi, Y., Hua, Y., Wang, B., Zhang, R., Li, X.: In silico prediction and insights into the structural basis of drug induced nephrotoxicity. Front. Pharmacol. 12, 01 (2022)

    Article  Google Scholar 

  20. Landrum, G., et al.: rdkit/rdkit: 2022_09_1b1 (q3 2022) release, October 2022

    Google Scholar 

  21. Prakisya, N.P.T., Liantoni, F., Hatta, P., Aristyagama, Y.H., Setiawan, A.: Utilization of k-nearest neighbor algorithm for classification of white blood cells in AML m4, m5, and m7. Open Eng. 11, 662–668 (2021)

    Google Scholar 

  22. Klimo, M., Škvarek, O., Tarábek, P., Šuch, O., Hrabovsky, J.: Nearest neighbor classification in Minkowski quasi-metric space. In: 2018 World Symposium on Digital Intelligence for Systems and Machines (DISA), pp. 227–232 (2018)

    Google Scholar 

  23. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)

    Article  MATH  Google Scholar 

  24. Wettschereck, D.: A study of distance-based machine learning algorithms. Ph.D. thesis, Oregon State University, USA, AAI9507711 (1994)

    Google Scholar 

  25. Bramer, M.: Principles of Data Mining. Springer, London (2007). https://doi.org/10.1007/978-1-84628-766-4

    Book  MATH  Google Scholar 

  26. Li-Yu, H., Huang, M.-W., Ke, S.-W., Tsai, C.-F.: The distance function effect on k-nearest neighbor classification for medical datasets. Springerplus 5, 12 (2016)

    Google Scholar 

  27. Williams, J., Li, Y.: Comparative study of distance functions for nearest neighbors. Adv. Tech. Comput. Sci. Softw. Eng. 79–84 (2008)

    Google Scholar 

  28. Berrar, D.: Cross-validation. In: Ranganathan, S., Gribskov, M., Nakai, K., Schönbach, C. (eds.) Encyclopedia of Bioinformatics and Computational Biology, pp. 542–545. Academic Press, Oxford (2019)

    Google Scholar 

  29. Deegalla, S., Boström, H.: Classification of microarrays with kNN: comparison of dimensionality reduction methods. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds.) IDEAL 2007. LNCS, vol. 4881, pp. 800–809. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77226-2_80

    Chapter  Google Scholar 

  30. Gfeller, D., Michielin, O., Zoete, V.: Shaping the interaction landscape of bioactive molecules. Bioinformatics 29(23), 3073–3079 (2013)

    Google Scholar 

  31. Wang, L., Ma, C., Wipf, P., Liu, H., Weiwei, S., Xie, X.-Q.: Targethunter: an in silico target identification tool for predicting therapeutic potential of small organic molecules based on chemogenomic database. AAPS J. 15(2), 395–406 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Karina Jimenes-Vargas or Eduardo Tejera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jimenes-Vargas, K., Perez-Castillo, Y., Tejera, E., Munteanu, C.R. (2023). Exploring Target Identification for Drug Design with K-Nearest Neighbors’ Algorithm. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2023. Lecture Notes in Computer Science(), vol 14126. Springer, Cham. https://doi.org/10.1007/978-3-031-42508-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42508-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42507-3

  • Online ISBN: 978-3-031-42508-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics