[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Learning Bezier-Durrmeyer Type Descriptors for Classifying Curves – Preliminary Studies

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2023)

Abstract

We aim to propose a new approach for generating descriptors for functional data that are represented by curves that may not be functions but rather parametrically described curves in 2D, 3D, etc. The idea of generating these descriptors is based on the Bezier curves, but instead of using classical control points, we propose to generalize the Durrmeyer approach for parametrically defined vector curves. The Durrmeyer-type descriptors are then estimated from noisy samples of the underlying curve and serve as input vectors to a selected classifier that is learned to recognize from which class of curves noisy observations come.

The Bezier curves are not rapidly convergent. However, our aim is not to reconstruct functions but to recognize them, maintaining the shape-preserving and variation-diminishing properties of these curves that increase the classification accuracy in the presence of noise without invoking pre-filtering procedures. For more complicated curves, one can directly apply our approach to their parts in a similar way as polynomial splines are used.

The proposed algorithm for learning descriptors of the Bezier-Durrmeyer type and training classifiers on them was tested on synthetic, but interesting per se, data from two families of the Lissajous curves observed with high amplitude noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, P.N., Araci, S., Bohner, M., Lipi, K.: Approximation degree of Durrmeyer-Bezier operators of blending type. J. Inequal. Appl., 29 (2018)

    Google Scholar 

  2. Ballard, D.H., Brown, C.M.: Computer Vision. Prentice Hall, Englewood Cliffs (1982)

    Google Scholar 

  3. Bezier, P.: Numerical Control: Mathematics and Applications. Wiley and Sons, London (1972)

    MATH  Google Scholar 

  4. Blum, H.: A transformation for extracting new descriptors of shape. In: Wathen-Dunn, W. (ed.) Models for the Perception of Speech and Visual Form, pp. 362–380. MIT Press, Cambridge (1967)

    Google Scholar 

  5. de Boor, C.A.: Practical Guide to Splines. Springer, Heidelberg (1978)

    Google Scholar 

  6. Bribiesca, E., Guzman, A.: How to describe pure form and how to measure differences in shape using shape numbers. Pattern Recogn. 12(2), 101–112 (1980)

    Article  Google Scholar 

  7. Chen, W., Ditzian, Z.: Best polynomial and Durrmeyer approximation in \(L_p(S)\). Indagationes Mathematicae 2, 437–452 (1991)

    Google Scholar 

  8. Chen, G.Y., Krzyżak, A., Duda, P., Cader, A.: Noise robust illumination invariant face recognition via bivariate wavelet shrinkage in logarithm domain. J. Artif. Intell. Soft Comput. Res. 12(3), 169–180 (2022)

    Article  Google Scholar 

  9. Cinque, L., Levialdi, S., Malizia, A.: Shape description using cubic polynomial Bezier curves. Pattern Recogn. Lett. 19(9), 821–828 (1998)

    Article  Google Scholar 

  10. Dahmen, W.: Convexity and Bernstein-Bézier polynomials. In: Curves and Surfaces, pp. 107–134. Academic Press (1991)

    Google Scholar 

  11. Dekking, F.M., Van Otterloo, P.J.: Fourier coding and reconstruction of complicated contours. IEEE Trans. Syst. Man Cybern. SMC 16(3), 395–404 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Delicado, P.: Another look at principal curves and surfaces. J. Multivariate Anal. 77(1), 84–116 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dubois, S.R., Glanz, F.H.: An autoregressive model approach to 2-D shape classification. IEEE Trans. Pattern Anal. Pattern Mach. Intell. PAMI 8, 55–66 (1986)

    Article  Google Scholar 

  14. Duchamp, T., Stuetzle, W.: Extremal properties of principal curves in the plane. Ann. Statist. 24, 1511–1520 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Flusser, J., Zitova, B., Suk, T.: Moments and Moment Invariants in Pattern Recognition. John Wiley Sons, Hoboken (2009)

    Book  MATH  Google Scholar 

  16. Freeman, H.: On the encoding of arbitrary geometric configurations. IEEE Trans. Elec. Comput. EC 10, 260–268 (1961)

    Article  MathSciNet  Google Scholar 

  17. Gonzales, R.C., Woods, R.E.: Digital Image Processing, 4th edn. Pearson, Hoboken (2018)

    Google Scholar 

  18. Gordon, W.J., Riesenfeld, R.F.: Bernstein-Bezier methods for the computer-aided design of free-form curves and surfaces. J. ACM (JACM) 21(2), 293–310 (1974)

    Article  MATH  Google Scholar 

  19. Granlund, G.H.: Fourier preprocessing for hand printed character recognition. IEEE Trans. Comput. C 21, 195–201 (1972)

    Article  MATH  Google Scholar 

  20. Hastie, T., Stuetzle, W.: Principal curves. J. Am. Stat. Assoc. 84(406), 502–516 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory IT 8, 179–187 (1962)

    Article  MATH  Google Scholar 

  22. Hernández-Mederos, V., Estrada-Sarlabous, J.: Sampling points on regular parametric curves with control of their distribution. Comput. Aided Geom. Des. 20(6), 363–382 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kashyap, R.L., Chellappa, R.: Stochastic models for closed boundary analysis: representation and reconstruction. IEEE Trans. Inf. Theory IT 27, 627–637 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kegl, B., Krzyzak, A., Linder, T., Zeger, K.: Learning and design of principal curves. IEEE Trans. Pattern Anal. Mach. Intell. 22(3), 281–297 (2000)

    Article  Google Scholar 

  25. Kegl, B., Krzyzak, A.: Piecewise linear skeletonization using principal curves. IEEE Trans. Pattern Anal. Mach. Intell. 24(1), 59–74 (2002)

    Article  Google Scholar 

  26. Krzyżak, A., Leung, S.Y., Suen, C.Y.: Reconstruction of two-dimensional patterns from Fourier descriptors. Mach. Vision Appl. 3, 123–140 (1989)

    Article  Google Scholar 

  27. Lorentz, G.G.: Bernstein Polynomials. American Mathematical Society (2013)

    Google Scholar 

  28. Mainar, E., Peña, J.M.: Evaluation algorithms for multivariate polynomials in Bernstein-Bézier form. J. Approx. Theory 143(1), 44–61 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ozertem, U., Erdogmus, D.: Locally defined principal curves and surfaces. J. Mach. Learn. Res. 12, 1249–1286 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Pepelyshev, A., Rafajłłowicz, E., Steland, A.: Estimation of the quantile function using Bernstein-Durrmeyer polynomials. J. Nonparametric Stat. 26(1), 1–20 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Persoon, E., Fu, K.S.: Shape discrimination using Fourier descriptors. IEEE Trans. Syst. Man Cybern. SMC 7, 170–179 (1977)

    Article  MathSciNet  Google Scholar 

  32. Phillips, G.M.: A survey of results on the q-Bernstein polynomials. IMA J. Numer. Anal. 30(1), 277–288 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pratt, W.K.: Introduction to Digital Image Processing. CRC Press, Boca Raton (2013)

    Book  Google Scholar 

  34. Rafajłowicz, E., Skubalska-Rafajłowicz, E.: Nonparametric regression estimation by Bernstein-Durrmeyer polynomials. Tatra Mt. Math. Publ. 17, 227–239 (1999)

    MathSciNet  MATH  Google Scholar 

  35. Rafajłowicz, E.: Optimal input signals for parameter estimation. In: Linear Systems with Spatio-Temporal Dynamics, De Gruyter, Berlin, Boston (2022)

    Google Scholar 

  36. Rafajłowicz, W.: Learning Decision Sequences For Repetitive Processes—Selected Algorithms. SSDC, vol. 401. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-88396-6

    Book  Google Scholar 

  37. Rafajłowicz, W. and Rafajłowicz, E., Wiȩckowski J.: Learning functional descriptors based on the bernstein polynomials - preliminary studies. In: International Conference on Artificial Intelligence and Soft Computing ICAISC 2022, Zakopane, Poland (2022)

    Google Scholar 

  38. Rosenfeld, A., Kak, A.C.: Digital Picture Processing. Academic Press, New York (1976)

    MATH  Google Scholar 

  39. Rutkowski, L., Rafajłowicz, E.: On optimal global rate of convergence of some nonparametric identification procedures. IEEE Trans. Autom. Control AC 34, 1089–1091 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tadeusiewicz, R.: Automatic understanding of signals. In: Intelligent Information Processing and Web Mining, pp. 577–590. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-39985-8_66

  41. Xin, Y., Pawlak, M., Liao, S.: Image reconstruction with polar zernike moments. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds.) ICAPR 2005. LNCS, vol. 3687, pp. 394–403. Springer, Heidelberg (2005). https://doi.org/10.1007/11552499_45

    Chapter  Google Scholar 

  42. Zahn, C.T., Roskies, R.Z.: Fourier descriptors for plane closed curves. IEEE Trans. Comput. C 21(3), 269–281 (1972)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewaryst Rafajłowicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krzyżak, A., Rafajłowicz, W., Rafajłowicz, E. (2023). Learning Bezier-Durrmeyer Type Descriptors for Classifying Curves – Preliminary Studies. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2023. Lecture Notes in Computer Science(), vol 14125. Springer, Cham. https://doi.org/10.1007/978-3-031-42505-9_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42505-9_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42504-2

  • Online ISBN: 978-3-031-42505-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics