Abstract
We aim to propose a new approach for generating descriptors for functional data that are represented by curves that may not be functions but rather parametrically described curves in 2D, 3D, etc. The idea of generating these descriptors is based on the Bezier curves, but instead of using classical control points, we propose to generalize the Durrmeyer approach for parametrically defined vector curves. The Durrmeyer-type descriptors are then estimated from noisy samples of the underlying curve and serve as input vectors to a selected classifier that is learned to recognize from which class of curves noisy observations come.
The Bezier curves are not rapidly convergent. However, our aim is not to reconstruct functions but to recognize them, maintaining the shape-preserving and variation-diminishing properties of these curves that increase the classification accuracy in the presence of noise without invoking pre-filtering procedures. For more complicated curves, one can directly apply our approach to their parts in a similar way as polynomial splines are used.
The proposed algorithm for learning descriptors of the Bezier-Durrmeyer type and training classifiers on them was tested on synthetic, but interesting per se, data from two families of the Lissajous curves observed with high amplitude noise.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Agrawal, P.N., Araci, S., Bohner, M., Lipi, K.: Approximation degree of Durrmeyer-Bezier operators of blending type. J. Inequal. Appl., 29 (2018)
Ballard, D.H., Brown, C.M.: Computer Vision. Prentice Hall, Englewood Cliffs (1982)
Bezier, P.: Numerical Control: Mathematics and Applications. Wiley and Sons, London (1972)
Blum, H.: A transformation for extracting new descriptors of shape. In: Wathen-Dunn, W. (ed.) Models for the Perception of Speech and Visual Form, pp. 362–380. MIT Press, Cambridge (1967)
de Boor, C.A.: Practical Guide to Splines. Springer, Heidelberg (1978)
Bribiesca, E., Guzman, A.: How to describe pure form and how to measure differences in shape using shape numbers. Pattern Recogn. 12(2), 101–112 (1980)
Chen, W., Ditzian, Z.: Best polynomial and Durrmeyer approximation in \(L_p(S)\). Indagationes Mathematicae 2, 437–452 (1991)
Chen, G.Y., Krzyżak, A., Duda, P., Cader, A.: Noise robust illumination invariant face recognition via bivariate wavelet shrinkage in logarithm domain. J. Artif. Intell. Soft Comput. Res. 12(3), 169–180 (2022)
Cinque, L., Levialdi, S., Malizia, A.: Shape description using cubic polynomial Bezier curves. Pattern Recogn. Lett. 19(9), 821–828 (1998)
Dahmen, W.: Convexity and Bernstein-Bézier polynomials. In: Curves and Surfaces, pp. 107–134. Academic Press (1991)
Dekking, F.M., Van Otterloo, P.J.: Fourier coding and reconstruction of complicated contours. IEEE Trans. Syst. Man Cybern. SMC 16(3), 395–404 (1986)
Delicado, P.: Another look at principal curves and surfaces. J. Multivariate Anal. 77(1), 84–116 (2001)
Dubois, S.R., Glanz, F.H.: An autoregressive model approach to 2-D shape classification. IEEE Trans. Pattern Anal. Pattern Mach. Intell. PAMI 8, 55–66 (1986)
Duchamp, T., Stuetzle, W.: Extremal properties of principal curves in the plane. Ann. Statist. 24, 1511–1520 (1996)
Flusser, J., Zitova, B., Suk, T.: Moments and Moment Invariants in Pattern Recognition. John Wiley Sons, Hoboken (2009)
Freeman, H.: On the encoding of arbitrary geometric configurations. IEEE Trans. Elec. Comput. EC 10, 260–268 (1961)
Gonzales, R.C., Woods, R.E.: Digital Image Processing, 4th edn. Pearson, Hoboken (2018)
Gordon, W.J., Riesenfeld, R.F.: Bernstein-Bezier methods for the computer-aided design of free-form curves and surfaces. J. ACM (JACM) 21(2), 293–310 (1974)
Granlund, G.H.: Fourier preprocessing for hand printed character recognition. IEEE Trans. Comput. C 21, 195–201 (1972)
Hastie, T., Stuetzle, W.: Principal curves. J. Am. Stat. Assoc. 84(406), 502–516 (1989)
Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory IT 8, 179–187 (1962)
Hernández-Mederos, V., Estrada-Sarlabous, J.: Sampling points on regular parametric curves with control of their distribution. Comput. Aided Geom. Des. 20(6), 363–382 (2003)
Kashyap, R.L., Chellappa, R.: Stochastic models for closed boundary analysis: representation and reconstruction. IEEE Trans. Inf. Theory IT 27, 627–637 (1981)
Kegl, B., Krzyzak, A., Linder, T., Zeger, K.: Learning and design of principal curves. IEEE Trans. Pattern Anal. Mach. Intell. 22(3), 281–297 (2000)
Kegl, B., Krzyzak, A.: Piecewise linear skeletonization using principal curves. IEEE Trans. Pattern Anal. Mach. Intell. 24(1), 59–74 (2002)
Krzyżak, A., Leung, S.Y., Suen, C.Y.: Reconstruction of two-dimensional patterns from Fourier descriptors. Mach. Vision Appl. 3, 123–140 (1989)
Lorentz, G.G.: Bernstein Polynomials. American Mathematical Society (2013)
Mainar, E., Peña, J.M.: Evaluation algorithms for multivariate polynomials in Bernstein-Bézier form. J. Approx. Theory 143(1), 44–61 (2006)
Ozertem, U., Erdogmus, D.: Locally defined principal curves and surfaces. J. Mach. Learn. Res. 12, 1249–1286 (2011)
Pepelyshev, A., Rafajłłowicz, E., Steland, A.: Estimation of the quantile function using Bernstein-Durrmeyer polynomials. J. Nonparametric Stat. 26(1), 1–20 (2014)
Persoon, E., Fu, K.S.: Shape discrimination using Fourier descriptors. IEEE Trans. Syst. Man Cybern. SMC 7, 170–179 (1977)
Phillips, G.M.: A survey of results on the q-Bernstein polynomials. IMA J. Numer. Anal. 30(1), 277–288 (2010)
Pratt, W.K.: Introduction to Digital Image Processing. CRC Press, Boca Raton (2013)
Rafajłowicz, E., Skubalska-Rafajłowicz, E.: Nonparametric regression estimation by Bernstein-Durrmeyer polynomials. Tatra Mt. Math. Publ. 17, 227–239 (1999)
Rafajłowicz, E.: Optimal input signals for parameter estimation. In: Linear Systems with Spatio-Temporal Dynamics, De Gruyter, Berlin, Boston (2022)
Rafajłowicz, W.: Learning Decision Sequences For Repetitive Processes—Selected Algorithms. SSDC, vol. 401. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-88396-6
Rafajłowicz, W. and Rafajłowicz, E., Wiȩckowski J.: Learning functional descriptors based on the bernstein polynomials - preliminary studies. In: International Conference on Artificial Intelligence and Soft Computing ICAISC 2022, Zakopane, Poland (2022)
Rosenfeld, A., Kak, A.C.: Digital Picture Processing. Academic Press, New York (1976)
Rutkowski, L., Rafajłowicz, E.: On optimal global rate of convergence of some nonparametric identification procedures. IEEE Trans. Autom. Control AC 34, 1089–1091 (1989)
Tadeusiewicz, R.: Automatic understanding of signals. In: Intelligent Information Processing and Web Mining, pp. 577–590. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-39985-8_66
Xin, Y., Pawlak, M., Liao, S.: Image reconstruction with polar zernike moments. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds.) ICAPR 2005. LNCS, vol. 3687, pp. 394–403. Springer, Heidelberg (2005). https://doi.org/10.1007/11552499_45
Zahn, C.T., Roskies, R.Z.: Fourier descriptors for plane closed curves. IEEE Trans. Comput. C 21(3), 269–281 (1972)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Krzyżak, A., Rafajłowicz, W., Rafajłowicz, E. (2023). Learning Bezier-Durrmeyer Type Descriptors for Classifying Curves – Preliminary Studies. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2023. Lecture Notes in Computer Science(), vol 14125. Springer, Cham. https://doi.org/10.1007/978-3-031-42505-9_45
Download citation
DOI: https://doi.org/10.1007/978-3-031-42505-9_45
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-42504-2
Online ISBN: 978-3-031-42505-9
eBook Packages: Computer ScienceComputer Science (R0)