[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Achilles Heel of Artificial Intelligence

  • Conference paper
  • First Online:
Recent Challenges in Intelligent Information and Database Systems (ACIIDS 2023)

Abstract

Since the dawn of its development the computer has been a staple of science fiction and thus mostly due to it humanity has constantly dreaded a day when intelligence stemming from computers commonly known as Artificial Intelligence (AI) would allegedly take over the world. The recent advent of advanced AI chatbot technology has again sparked that fear due to its ability to compose essays similar to that of a human being. This chapter discusses the concept of intelligence in biology and binary digital computing. Based upon the weaknesses of either, especially the hidden vulnerabilities of AI predicted by Gödel’s First Incompleteness Theorem and role of humans in programming AI, the question of whether it is likely to happen in the near future is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, S.S., Burbeck, S.: Beyond the octopus: from general intelligence toward a human-like mind. In: Wang, P., Goertzel, B. (eds.) Theoretical Foundations of Artificial General Intelligence. Atlantis Thinking Machines, vol. 4, pp. 49–65. Atlantis Press, Paris (2012). https://doi.org/10.2991/978-94-91216-62-6_4

  2. Agrawal, A., Gans, J., Goldfarb, A.: What to expect from artificial intelligence (2017)

    Google Scholar 

  3. Aktius, M., Nordahl, M., Ziemke, T.: A behavior-based model of the hydra, phylum cnidaria. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 1024–1033. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74913-4_103

    Chapter  Google Scholar 

  4. Awad, A., Pang, W., Lusseau, D., Coghill, G.M.: A survey on Physarum polycephalum intelligent foraging behaviour and bio-inspired applications. Artif. Intell. Rev. 56(1), 1–26 (2023)

    Article  Google Scholar 

  5. Bayne, T., et al.: What is cognition? Curr. Biol. 29(13), R608–R615 (2019)

    Article  Google Scholar 

  6. Berridge, K.C.: From prediction error to incentive salience: mesolimbic computation of reward motivation. Eur. J. Neurosci. 35(7), 1124–1143 (2012)

    Article  Google Scholar 

  7. Boden, M.A.: Artificial intelligence. Elsevier (1996)

    Google Scholar 

  8. Brodie, E.D., III., Brodie, E.D., Jr.: Predator-prey arms races: asymmetrical selection on predators and prey may be reduced when prey are dangerous. Bioscience 49(7), 557–568 (1999)

    Article  Google Scholar 

  9. Brooks, R.A.: New approaches to robotics. Science 253(5025), 1227–1232 (1991)

    Article  Google Scholar 

  10. Cook, M., et al.: Universality in elementary cellular automata. Complex Syst. 15(1), 1–40 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Corning, P.A.: The re-emergence of “emergence’’: a venerable concept in search of a theory. Complexity 7(6), 18–30 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. De Houwer, J., Barnes-Holmes, D., Moors, A.: What is learning? on the nature and merits of a functional definition of learning. Psychon. Bull. Rev. 20, 631–642 (2013)

    Article  Google Scholar 

  13. Devona, H.: Whales: incredible ocean mammals. J. Geogr. 91(4), 166–170 (1992)

    Google Scholar 

  14. Fitts, P.M.: Human engineering for an effective air-navigation and traffic-control system (1951)

    Google Scholar 

  15. Galloway, J.A., Green, S.D., Stevens, M., Kelley, L.A.: Finding a signal hidden among noise: how can predators overcome camouflage strategies? Philos. Trans. Royal Soc. B 375(1802), 20190478 (2020)

    Article  Google Scholar 

  16. Gauglitz, G.: Artificial vs. human intelligence in analytics: do computers outperform analytical chemists? Anal. Bioanal. Chem. 411(22), 5631–5632 (2019)

    Google Scholar 

  17. Gauker, C.: Visual imagery in the thought of monkeys and apes. In: The Routledge Handbook of Philosophy of Animal Minds, pp. 25–33. Routledge, Milton Park (2017)

    Google Scholar 

  18. Gelbard-Sagiv, H., Mudrik, L., Hill, M.R., Koch, C., Fried, I.: Human single neuron activity precedes emergence of conscious perception. Nat. Commun. 9(1), 2057 (2018)

    Article  Google Scholar 

  19. Gliozzo, A., Biran, O., Patwardhan, S., McKeown, K.: Semantic technologies in IBM Watson. In: Proceedings of the Fourth Workshop on Teaching NLP and CL, pp. 85–92 (2013)

    Google Scholar 

  20. Greene, C.H.: Patterns of prey selection: implications of predator foraging tactics. Am. Nat. 128(6), 824–839 (1986)

    Article  Google Scholar 

  21. Grobas, I., Bazzoli, D.G., Asally, M.: Biofilm and swarming emergent behaviours controlled through the aid of biophysical understanding and tools. Biochem. Soc. Trans. 48(6), 2903–2913 (2020)

    Article  Google Scholar 

  22. Guo, N., et al.: Continuous-time hybrid computation with programmable nonlinearities. In: ESSCIRC Conference 2015–41st European Solid-State Circuits Conference (ESSCIRC), pp. 279–282. IEEE (2015)

    Google Scholar 

  23. Harari, Y.N.: Reboot for the AI revolution. Nature 550(7676), 324–327 (2017)

    Article  Google Scholar 

  24. Herculano-Houzel, S.: The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proc. Natl. Acad. Sci. 109(supplement_1), 10661–10668 (2012)

    Google Scholar 

  25. Herman, L.M., Pack, A.A., Wood, A.M.: Bottlenose dolphins can generalize rules and develop abstract concepts. Mar. Mammal Sci. 10(1), 70–80 (1994)

    Article  Google Scholar 

  26. Hirose, N.: An ecological approach to embodiment and cognition. Cogn. Syst. Res. 3(3), 289–299 (2002)

    Article  Google Scholar 

  27. Hsu, F.H.: Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Princeton University Press, Princeton (2002)

    Google Scholar 

  28. Jost, J.T., Sapolsky, R.M., Nam, H.H.: Speculations on the evolutionary origins of system justification. Evol. Psychol. 16(2), 1474704918765342 (2018)

    Article  Google Scholar 

  29. Kaelbling, L.P., Littman, M.L., Moore, A.W.: An introduction to reinforcement learning. In: Steels, L. (ed.) NATO ASI Series, vol. 144, pp. 90–127. Springer, Heidelberg (1995). https://doi.org/10.1007/978-3-642-79629-6_5

    Chapter  Google Scholar 

  30. Kawai, N., He, H.: Breaking snake camouflage: humans detect snakes more accurately than other animals under less discernible visual conditions. PLoS One 11(10), e0164342 (2016)

    Article  Google Scholar 

  31. Koch, C.: How the computer beat the go player. Sci. Am. Mind 27(4), 20–23 (2016)

    Article  Google Scholar 

  32. Lefebvre, L.: Brains, innovations, tools and cultural transmission in birds, non-human primates, and fossil hominins. Front. Hum. Neurosci. 7, 245 (2013)

    Article  Google Scholar 

  33. Legg, S., Hutter, M.: Universal intelligence: a definition of machine intelligence. Minds Mach. 17, 391–444 (2007)

    Article  Google Scholar 

  34. Lenat, D.B.: EURISKO: a program that learns new heuristics and domain concepts: the nature of heuristics iii: program design and results. Artif. Intell 21(1–2), 61–98 (1983)

    Article  Google Scholar 

  35. Liu, P., Du, M., Li, T.: Psychological consequences of legal responsibility misattribution associated with automated vehicles. Ethics Inf. Technol. 23(4), 763–776 (2021). https://doi.org/10.1007/s10676-021-09613-y

    Article  Google Scholar 

  36. Lund, B.D., Wang, T.: Chatting about ChatGPT: how may AI and GPT impact academia and libraries? Libr. Hi Tech News 40, 26–29 (2023)

    Article  Google Scholar 

  37. Mansouri, F.A., Freedman, D.J., Buckley, M.J.: Emergence of abstract rules in the primate brain. Nat. Rev. Neurosci. 21(11), 595–610 (2020)

    Article  Google Scholar 

  38. Mendis, D., Petrou, S., Halgamuge, S.: Neuromechatronics with in-vitro microelectrode arrays. In: Mechatronics, pp. 582–603. CRC Press (2015)

    Google Scholar 

  39. Mendis, G., Morrisroe, E., Petrou, S., Halgamuge, S.: Use of adaptive network burst detection methods for multielectrode array data and the generation of artificial spike patterns for method evaluation. J. Neural Eng. 13(2), 026009 (2016)

    Article  Google Scholar 

  40. Miller, M.B., Bassler, B.L.: Quorum sensing in bacteria. Annu. Rev. Microbiol. 55(1), 165–199 (2001)

    Article  Google Scholar 

  41. Mondal, A., Upadhyay, R.K., Mondal, A., Sharma, S.K.: Emergence of Turing patterns and dynamic visualization in excitable neuron model. Appl. Math. Comput. 423, 127010 (2022)

    MathSciNet  MATH  Google Scholar 

  42. Numan, M.: Motivational systems and the neural circuitry of maternal behavior in the rat. Dev. Psychobiol. J. Int. Soc. Dev. Psychobiol. 49(1), 12–21 (2007)

    Article  Google Scholar 

  43. O’Callaghan, C., Shine, J.M., Lewis, S.J., Andrews-Hanna, J.R., Irish, M.: Shaped by our thoughts-a new task to assess spontaneous cognition and its associated neural correlates in the default network. Brain Cogn. 93, 1–10 (2015)

    Article  Google Scholar 

  44. Pei, J., et al.: Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature 572(7767), 106–111 (2019)

    Article  Google Scholar 

  45. Povinelli, D.J.: Monkeys, apes, mirrors and minds: the evolution of self-awareness in primates. Hum. Evol. 2, 493–509 (1987)

    Article  Google Scholar 

  46. Rajpurkar, P., et al.: Deep learning for chest radiograph diagnosis: a retrospective comparison of the CheXneXt algorithm to practicing radiologists. PLoS Med. 15(11), e1002686 (2018)

    Article  Google Scholar 

  47. Rogers, D.S., Ehrlich, P.R.: Natural selection and cultural rates of change. Proc. Natl. Acad. Sci. 105(9), 3416–3420 (2008)

    Article  Google Scholar 

  48. Romero-Campero, F.J., Pérez-Jiménez, M.J.: Modelling gene expression control using p systems: the lac operon, a case study. BioSystems 91(3), 438–457 (2008)

    Article  Google Scholar 

  49. Rudolph, J., Tan, S., Tan, S.: ChatGPT: bullshit spewer or the end of traditional assessments in higher education? J. Appl. Learn. Teach. 6(1) (2023)

    Google Scholar 

  50. Russel, S., Norvig, P., et al.: Artificial Intelligence: A Modern Approach, vol. 256. Pearson Education Limited, London (2013)

    Google Scholar 

  51. Satterlie, R.A.: Cnidarian nerve nets and neuromuscular efficiency. Integr. Comp. Biol. 55(6), 1050–1057 (2015)

    Article  Google Scholar 

  52. Schultz, W.: Neuronal reward and decision signals: from theories to data. Physiol. Rev. 95(3), 853–951 (2015)

    Article  Google Scholar 

  53. Smith, P.: An Introduction to Gödel’s Theorems. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  54. Spielman, Z., Le Blanc, K.: Boeing 737 MAX: expectation of human capability in highly automated systems. In: Zallio, M. (ed.) AHFE 2020. AISC, vol. 1210, pp. 64–70. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-51758-8_9

    Chapter  Google Scholar 

  55. Sugden, K.F.: A history of the abacus. Account. Historians J. 8(2), 1–22 (1981)

    Article  Google Scholar 

  56. Thorp, H.H.: ChatGPT is fun, but not an author (2023)

    Google Scholar 

  57. Topalovic, M., et al.: Artificial intelligence outperforms pulmonologists in the interpretation of pulmonary function tests. Eur. Resp. J. 53(4) (2019)

    Google Scholar 

  58. Veliz-Cuba, A., Stigler, B.: Boolean models can explain bistability in the lac operon. J. Comput. Biol. 18(6), 783–794 (2011)

    Article  MathSciNet  Google Scholar 

  59. Von Bartheld, C.S., Bahney, J., Herculano-Houzel, S.: The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. J. Comp. Neurol. 524(18), 3865–3895 (2016)

    Article  Google Scholar 

  60. Vonk, J.: Gorilla (Gorilla gorilla gorilla) and orangutan (Pongo abelii) understanding of first-and second-order relations. Anim. Cogn. 6, 77–86 (2003)

    Article  Google Scholar 

  61. Warlow, S.M., Naffziger, E.E., Berridge, K.C.: The central amygdala recruits mesocorticolimbic circuitry for pursuit of reward or pain. Nat. Commun. 11(1), 2716 (2020)

    Article  Google Scholar 

  62. Waters, R.: Man beats machine at go in human victory over AI. Financial Times (2023). https://www.ft.com/content/175e5314-a7f7-4741-a786-273219f433a1

  63. Weser, V.U., Proffitt, D.R.: Expertise in tool use promotes tool embodiment. Top. Cogn. Sci. 13(4), 597–609 (2021)

    Article  Google Scholar 

  64. Williamson, T.: Inexact knowledge. Mind 101(402), 217–242 (1992)

    Article  MathSciNet  Google Scholar 

  65. Xiao, F., Cuthill, I.C.: Background complexity and the detectability of camouflaged targets by birds and humans. Proc. Royal Soc. B: Biol. Sci. 283(1838), 20161527 (2016)

    Article  Google Scholar 

  66. Yampolskiy, R.V.: Turing test as a defining feature of AI-completeness. In: Yang, X.S. (ed.) Artificial Intelligence, Evolutionary Computing and Metaheuristics. Studies in Computational Intelligence, vol. 427, pp. 3–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-29694-9_1

    Chapter  Google Scholar 

  67. Zachreson, C., Wolff, C., Whitchurch, C.B., Toth, M.: Emergent pattern formation in an interstitial biofilm. Phys. Rev. E 95(1), 012408 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Upeka Premaratne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Premaratne, U., Halgamuge, S. (2023). The Achilles Heel of Artificial Intelligence. In: Nguyen, N.T., et al. Recent Challenges in Intelligent Information and Database Systems. ACIIDS 2023. Communications in Computer and Information Science, vol 1863. Springer, Cham. https://doi.org/10.1007/978-3-031-42430-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42430-4_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42429-8

  • Online ISBN: 978-3-031-42430-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics