Abstract
Since the dawn of its development the computer has been a staple of science fiction and thus mostly due to it humanity has constantly dreaded a day when intelligence stemming from computers commonly known as Artificial Intelligence (AI) would allegedly take over the world. The recent advent of advanced AI chatbot technology has again sparked that fear due to its ability to compose essays similar to that of a human being. This chapter discusses the concept of intelligence in biology and binary digital computing. Based upon the weaknesses of either, especially the hidden vulnerabilities of AI predicted by Gödel’s First Incompleteness Theorem and role of humans in programming AI, the question of whether it is likely to happen in the near future is discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adams, S.S., Burbeck, S.: Beyond the octopus: from general intelligence toward a human-like mind. In: Wang, P., Goertzel, B. (eds.) Theoretical Foundations of Artificial General Intelligence. Atlantis Thinking Machines, vol. 4, pp. 49–65. Atlantis Press, Paris (2012). https://doi.org/10.2991/978-94-91216-62-6_4
Agrawal, A., Gans, J., Goldfarb, A.: What to expect from artificial intelligence (2017)
Aktius, M., Nordahl, M., Ziemke, T.: A behavior-based model of the hydra, phylum cnidaria. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 1024–1033. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74913-4_103
Awad, A., Pang, W., Lusseau, D., Coghill, G.M.: A survey on Physarum polycephalum intelligent foraging behaviour and bio-inspired applications. Artif. Intell. Rev. 56(1), 1–26 (2023)
Bayne, T., et al.: What is cognition? Curr. Biol. 29(13), R608–R615 (2019)
Berridge, K.C.: From prediction error to incentive salience: mesolimbic computation of reward motivation. Eur. J. Neurosci. 35(7), 1124–1143 (2012)
Boden, M.A.: Artificial intelligence. Elsevier (1996)
Brodie, E.D., III., Brodie, E.D., Jr.: Predator-prey arms races: asymmetrical selection on predators and prey may be reduced when prey are dangerous. Bioscience 49(7), 557–568 (1999)
Brooks, R.A.: New approaches to robotics. Science 253(5025), 1227–1232 (1991)
Cook, M., et al.: Universality in elementary cellular automata. Complex Syst. 15(1), 1–40 (2004)
Corning, P.A.: The re-emergence of “emergence’’: a venerable concept in search of a theory. Complexity 7(6), 18–30 (2002)
De Houwer, J., Barnes-Holmes, D., Moors, A.: What is learning? on the nature and merits of a functional definition of learning. Psychon. Bull. Rev. 20, 631–642 (2013)
Devona, H.: Whales: incredible ocean mammals. J. Geogr. 91(4), 166–170 (1992)
Fitts, P.M.: Human engineering for an effective air-navigation and traffic-control system (1951)
Galloway, J.A., Green, S.D., Stevens, M., Kelley, L.A.: Finding a signal hidden among noise: how can predators overcome camouflage strategies? Philos. Trans. Royal Soc. B 375(1802), 20190478 (2020)
Gauglitz, G.: Artificial vs. human intelligence in analytics: do computers outperform analytical chemists? Anal. Bioanal. Chem. 411(22), 5631–5632 (2019)
Gauker, C.: Visual imagery in the thought of monkeys and apes. In: The Routledge Handbook of Philosophy of Animal Minds, pp. 25–33. Routledge, Milton Park (2017)
Gelbard-Sagiv, H., Mudrik, L., Hill, M.R., Koch, C., Fried, I.: Human single neuron activity precedes emergence of conscious perception. Nat. Commun. 9(1), 2057 (2018)
Gliozzo, A., Biran, O., Patwardhan, S., McKeown, K.: Semantic technologies in IBM Watson. In: Proceedings of the Fourth Workshop on Teaching NLP and CL, pp. 85–92 (2013)
Greene, C.H.: Patterns of prey selection: implications of predator foraging tactics. Am. Nat. 128(6), 824–839 (1986)
Grobas, I., Bazzoli, D.G., Asally, M.: Biofilm and swarming emergent behaviours controlled through the aid of biophysical understanding and tools. Biochem. Soc. Trans. 48(6), 2903–2913 (2020)
Guo, N., et al.: Continuous-time hybrid computation with programmable nonlinearities. In: ESSCIRC Conference 2015–41st European Solid-State Circuits Conference (ESSCIRC), pp. 279–282. IEEE (2015)
Harari, Y.N.: Reboot for the AI revolution. Nature 550(7676), 324–327 (2017)
Herculano-Houzel, S.: The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proc. Natl. Acad. Sci. 109(supplement_1), 10661–10668 (2012)
Herman, L.M., Pack, A.A., Wood, A.M.: Bottlenose dolphins can generalize rules and develop abstract concepts. Mar. Mammal Sci. 10(1), 70–80 (1994)
Hirose, N.: An ecological approach to embodiment and cognition. Cogn. Syst. Res. 3(3), 289–299 (2002)
Hsu, F.H.: Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Princeton University Press, Princeton (2002)
Jost, J.T., Sapolsky, R.M., Nam, H.H.: Speculations on the evolutionary origins of system justification. Evol. Psychol. 16(2), 1474704918765342 (2018)
Kaelbling, L.P., Littman, M.L., Moore, A.W.: An introduction to reinforcement learning. In: Steels, L. (ed.) NATO ASI Series, vol. 144, pp. 90–127. Springer, Heidelberg (1995). https://doi.org/10.1007/978-3-642-79629-6_5
Kawai, N., He, H.: Breaking snake camouflage: humans detect snakes more accurately than other animals under less discernible visual conditions. PLoS One 11(10), e0164342 (2016)
Koch, C.: How the computer beat the go player. Sci. Am. Mind 27(4), 20–23 (2016)
Lefebvre, L.: Brains, innovations, tools and cultural transmission in birds, non-human primates, and fossil hominins. Front. Hum. Neurosci. 7, 245 (2013)
Legg, S., Hutter, M.: Universal intelligence: a definition of machine intelligence. Minds Mach. 17, 391–444 (2007)
Lenat, D.B.: EURISKO: a program that learns new heuristics and domain concepts: the nature of heuristics iii: program design and results. Artif. Intell 21(1–2), 61–98 (1983)
Liu, P., Du, M., Li, T.: Psychological consequences of legal responsibility misattribution associated with automated vehicles. Ethics Inf. Technol. 23(4), 763–776 (2021). https://doi.org/10.1007/s10676-021-09613-y
Lund, B.D., Wang, T.: Chatting about ChatGPT: how may AI and GPT impact academia and libraries? Libr. Hi Tech News 40, 26–29 (2023)
Mansouri, F.A., Freedman, D.J., Buckley, M.J.: Emergence of abstract rules in the primate brain. Nat. Rev. Neurosci. 21(11), 595–610 (2020)
Mendis, D., Petrou, S., Halgamuge, S.: Neuromechatronics with in-vitro microelectrode arrays. In: Mechatronics, pp. 582–603. CRC Press (2015)
Mendis, G., Morrisroe, E., Petrou, S., Halgamuge, S.: Use of adaptive network burst detection methods for multielectrode array data and the generation of artificial spike patterns for method evaluation. J. Neural Eng. 13(2), 026009 (2016)
Miller, M.B., Bassler, B.L.: Quorum sensing in bacteria. Annu. Rev. Microbiol. 55(1), 165–199 (2001)
Mondal, A., Upadhyay, R.K., Mondal, A., Sharma, S.K.: Emergence of Turing patterns and dynamic visualization in excitable neuron model. Appl. Math. Comput. 423, 127010 (2022)
Numan, M.: Motivational systems and the neural circuitry of maternal behavior in the rat. Dev. Psychobiol. J. Int. Soc. Dev. Psychobiol. 49(1), 12–21 (2007)
O’Callaghan, C., Shine, J.M., Lewis, S.J., Andrews-Hanna, J.R., Irish, M.: Shaped by our thoughts-a new task to assess spontaneous cognition and its associated neural correlates in the default network. Brain Cogn. 93, 1–10 (2015)
Pei, J., et al.: Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature 572(7767), 106–111 (2019)
Povinelli, D.J.: Monkeys, apes, mirrors and minds: the evolution of self-awareness in primates. Hum. Evol. 2, 493–509 (1987)
Rajpurkar, P., et al.: Deep learning for chest radiograph diagnosis: a retrospective comparison of the CheXneXt algorithm to practicing radiologists. PLoS Med. 15(11), e1002686 (2018)
Rogers, D.S., Ehrlich, P.R.: Natural selection and cultural rates of change. Proc. Natl. Acad. Sci. 105(9), 3416–3420 (2008)
Romero-Campero, F.J., Pérez-Jiménez, M.J.: Modelling gene expression control using p systems: the lac operon, a case study. BioSystems 91(3), 438–457 (2008)
Rudolph, J., Tan, S., Tan, S.: ChatGPT: bullshit spewer or the end of traditional assessments in higher education? J. Appl. Learn. Teach. 6(1) (2023)
Russel, S., Norvig, P., et al.: Artificial Intelligence: A Modern Approach, vol. 256. Pearson Education Limited, London (2013)
Satterlie, R.A.: Cnidarian nerve nets and neuromuscular efficiency. Integr. Comp. Biol. 55(6), 1050–1057 (2015)
Schultz, W.: Neuronal reward and decision signals: from theories to data. Physiol. Rev. 95(3), 853–951 (2015)
Smith, P.: An Introduction to Gödel’s Theorems. Cambridge University Press, Cambridge (2013)
Spielman, Z., Le Blanc, K.: Boeing 737 MAX: expectation of human capability in highly automated systems. In: Zallio, M. (ed.) AHFE 2020. AISC, vol. 1210, pp. 64–70. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-51758-8_9
Sugden, K.F.: A history of the abacus. Account. Historians J. 8(2), 1–22 (1981)
Thorp, H.H.: ChatGPT is fun, but not an author (2023)
Topalovic, M., et al.: Artificial intelligence outperforms pulmonologists in the interpretation of pulmonary function tests. Eur. Resp. J. 53(4) (2019)
Veliz-Cuba, A., Stigler, B.: Boolean models can explain bistability in the lac operon. J. Comput. Biol. 18(6), 783–794 (2011)
Von Bartheld, C.S., Bahney, J., Herculano-Houzel, S.: The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. J. Comp. Neurol. 524(18), 3865–3895 (2016)
Vonk, J.: Gorilla (Gorilla gorilla gorilla) and orangutan (Pongo abelii) understanding of first-and second-order relations. Anim. Cogn. 6, 77–86 (2003)
Warlow, S.M., Naffziger, E.E., Berridge, K.C.: The central amygdala recruits mesocorticolimbic circuitry for pursuit of reward or pain. Nat. Commun. 11(1), 2716 (2020)
Waters, R.: Man beats machine at go in human victory over AI. Financial Times (2023). https://www.ft.com/content/175e5314-a7f7-4741-a786-273219f433a1
Weser, V.U., Proffitt, D.R.: Expertise in tool use promotes tool embodiment. Top. Cogn. Sci. 13(4), 597–609 (2021)
Williamson, T.: Inexact knowledge. Mind 101(402), 217–242 (1992)
Xiao, F., Cuthill, I.C.: Background complexity and the detectability of camouflaged targets by birds and humans. Proc. Royal Soc. B: Biol. Sci. 283(1838), 20161527 (2016)
Yampolskiy, R.V.: Turing test as a defining feature of AI-completeness. In: Yang, X.S. (ed.) Artificial Intelligence, Evolutionary Computing and Metaheuristics. Studies in Computational Intelligence, vol. 427, pp. 3–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-29694-9_1
Zachreson, C., Wolff, C., Whitchurch, C.B., Toth, M.: Emergent pattern formation in an interstitial biofilm. Phys. Rev. E 95(1), 012408 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Premaratne, U., Halgamuge, S. (2023). The Achilles Heel of Artificial Intelligence. In: Nguyen, N.T., et al. Recent Challenges in Intelligent Information and Database Systems. ACIIDS 2023. Communications in Computer and Information Science, vol 1863. Springer, Cham. https://doi.org/10.1007/978-3-031-42430-4_32
Download citation
DOI: https://doi.org/10.1007/978-3-031-42430-4_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-42429-8
Online ISBN: 978-3-031-42430-4
eBook Packages: Computer ScienceComputer Science (R0)